References
ABC. 2020. Growing
good – almond sustainability. Almond Board of California, 1150 Ninth
Street, Suite 1500, Modesto, CA95354.
Akaike, H. 1998. Information theory
and an extension of the maximum likelihood principle. Selected
papers of Hirotugu Akaike:199–213.
Allen, W. A. 1973. Transmission of isotropic
light across a dielectric surface in two and three dimensions. JOSA
63:664–666.
Allen, W. A., H. W. Gausman, A. J. Richardson, and J. R. Thomas. 1969.
Interaction of
isotropic light with a compact plant leaf. JOSA 59:1376–1379.
Allen, W. A., H. Gausman, and A. Richardson. 1973. Willstätter-stoll
theory of leaf reflectance evaluated by ray tracing. Applied Optics
12:2448–2453.
Asner, G. P., and R. E. Martin. 2009. Airborne spectranomics: Mapping
canopy chemical and taxonomic diversity in tropical forests.
Frontiers in Ecology and the Environment 7:269–276.
Atzberger, C., K. Richter, F. Vuolo, R. Darvishzadeh, and M. Schlerf.
2011. Why confining to
vegetation indices? Exploiting the potential of improved spectral
observations using radiative transfer models. Pages 263–278 Remote
sensing for agriculture, ecosystems, and hydrology XIII. SPIE.
Bailey, B. N. 2019. Helios: A scalable 3D
plant and environmental biophysical modeling framework. Frontiers in
Plant Science 10:1185.
Bailey, B. N., and W. F. Mahaffee. 2017. Rapid measurement of
the three-dimensional distribution of leaf orientation and the leaf
angle probability density function using terrestrial LiDAR scanning.
Remote Sensing of Environment 194:63–76.
Bailey, B. N., M. A. Ponce de León, and E. S. Krayenhoff. 2020. One-dimensional models
of radiation transfer in heterogeneous canopies: A review,
re-evaluation, and improved model. Geoscientific Model Development
13:4789–4808.
Baret, F., and T. Fourty. 1997. Estimation of leaf water
content and specific leaf weight from reflectance and transmittance
measurements. Agronomie 17:455–464.
Baret, F., V. Houlès, and M. Guerif. 2007. Quantification of plant stress
using remote sensing observations and crop models: The case of nitrogen
management. Journal of experimental botany 58:869–880.
Baret, F., S. Jacquemoud, G. Guyot, and C. Leprieur. 1992. Modeled analysis of
the biophysical nature of spectral shifts and comparison with
information content of broad bands. Remote Sensing of Environment
41:133–142.
Baret, F., S. Jacquemoud, and J. Hanocq. 1993. The soil line concept
in remote sensing. Remote Sensing Reviews 7:65–82.
Barnes, E., T. Clarke, S. Richards, P. Colaizzi, J. Haberland, M.
Kostrzewski, P. Waller, C. Choi, E. Riley, T. Thompson, and others.
2000. Coincident detection of crop water stress, nitrogen status and
canopy density using ground based multispectral data. Page 6 Proceedings
of the fifth international conference on precision agriculture,
bloomington, MN, USA.
Beer, A. 1852. Bestimmung der absorption des rothen
lichts in farbigen flussigkeiten. Ann. Physik 162:78–88.
Bennett, K., and M. Embrechts. 2003. An optimization perspective on
kernel partial least squares regression. Nato Science Series sub series
III computer and systems sciences 190:227–250.
Berger, K., C. Atzberger, M. Danner, G. D’Urso, W. Mauser, F. Vuolo, and
T. Hank. 2018. Evaluation
of the PROSAIL model capabilities for future hyperspectral model
environments: A review study. Remote Sensing 10:85.
Berger, K., J. Verrelst, J.-B. Feret, Z. Wang, M. Wocher, M. Strathmann,
M. Danner, W. Mauser, and T. Hank. 2020. Crop nitrogen
monitoring: Recent progress and principal developments in the context of
imaging spectroscopy missions. Remote Sensing of Environment
242:111758.
Bioucas-Dias, J. M., A. Plaza, G. Camps-Valls, P. Scheunders, N.
Nasrabadi, and J. Chanussot. 2013. Hyperspectral remote
sensing data analysis and future challenges. IEEE Geoscience and
remote sensing magazine 1:6–36.
Bjerga, A., D. Cohen, and C. Hoffman. 2018. California almonds are back
after four years of brutal drought. Bloomberg.
Bloem, E., S. Haneklaus, and E. Schnug. 2005. Influence of nitrogen and
sulfur fertilization on the alliin content of onions and garlic.
Journal of Plant Nutrition 27:1827–1839.
Blumthaler, M., W. Ambach, and R. Ellinger. 1997. Increase in solar
UV radiation with altitude. Journal of photochemistry and
Photobiology B: Biology 39:130–134.
Bolster, K. L., M. E. Martin, and J. D. Aber. 1996. Determination of carbon fraction
and nitrogen concentration in tree foliage by near infrared
reflectances: A comparison of statistical methods. Canadian journal
of forest research 26:590–600.
Borchers, H. W. 2022. Pracma: Practical
numerical math functions.
Breiman, L. 2001. Random forests.
Machine Learning 45:5–32.
Brown, P. H., S. Saa, S. Muhammad, and S. D. Khalsa. 2020. Nitrogen best
management practices. Almond Board of California, 1150 Ninth Street,
Suite 1500, Modesto, CA 95354.
Bruno, E. M., B. Goodrich, and R. J. Sexton. 2021. The outlook for
california’s almond market. Calif. Almond Acreage Rep 24:9–11.
Bruno, T. J., and P. D. Svoronos. 2005. CRC handbook of fundamental
spectroscopic correlation charts. CRC Press.
Bubeck, S., V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E.
Kamar, P. Lee, Y. T. Lee, Y. Li, S. Lundberg, and others. 2023. Sparks of artificial
general intelligence: Early experiments with gpt-4. arXiv preprint
arXiv:2303.12712.
Burke, M., A. Driscoll, D. B. Lobell, and S. Ermon. 2021. Using satellite imagery
to understand and promote sustainable development. Science
371:eabe8628.
Byrnes, J. 2009. Unexploded ordnance
detection and mitigation. Springer Science & Business Media.
Camino, C., R. Calderón, S. Parnell, H. Dierkes, Y. Chemin, M.
Román-Écija, M. Montes-Borrego, B. B. Landa, J. A. Navas-Cortes, P. J.
Zarco-Tejada, and others. 2021. Detection of xylella
fastidiosa in almond orchards by synergic use of an epidemic spread
model and remotely sensed plant traits. Remote Sensing of
Environment 260:112420.
Camino, C., V. González-Dugo, P. Hernández, J. Sillero, and P. J.
Zarco-Tejada. 2018. Improved nitrogen
retrievals with airborne-derived fluorescence and plant traits
quantified from VNIR-SWIR hyperspectral imagery in the context of
precision agriculture. International journal of applied earth
observation and geoinformation 70:105–117.
Camps-Valls, G., D. Tuia, L. Gómez-Chova, S. Jiménez, and J. Malo. 2011.
Remote sensing
image processing. Synthesis Lectures on Image, Video, and Multimedia
Processing 5:1–192.
Castaldi, F., A. Castrignanò, and R. Casa. 2016. A data fusion and
spatial data analysis approach for the estimation of wheat grain
nitrogen uptake from satellite data. International Journal of Remote
Sensing 37:4317–4336.
CDFA. 2020. California agriculture exports 2019-2020. California
Department of Food and Argiculture, 1220 N Street, Sacramento, CA
95812.
Ceres Imaging. 2022. Water stress
index. Webpage.
Chapin, F. S., A. J. Bloom, C. B. Field, and R. H. Waring. 1987. Plant responses to multiple
environmental factors. Bioscience 37:49–57.
Chen, T., and C. Guestrin. 2016. XGBoost: A scalable tree boosting
system. Pages 785–794 Proceedings of the 22nd acm sigkdd international
conference on knowledge discovery and data mining.
Chen, T., T. He, M. Benesty, V. Khotilovich, Y. Tang, H. Cho, K. Chen,
R. Mitchell, I. Cano, T. Zhou, M. Li, J. Xie, M. Lin, Y. Geng, Y. Li,
and J. Yuan. 2022. Xgboost: Extreme
gradient boosting.
Cheng, X., G. Yang, X. Xu, T. Chen, Z. Li, H. Feng, D. Wang, and others.
2014. Estimating
canopy water content in wheat based on new vegetation water index.
Spectroscopy and Spectral Analysis 34:3391–3396.
Chicco, D., M. J. Warrens, and G. Jurman. 2021. The coefficient of
determination r-squared is more informative than SMAPE,
MAE, MAPE, MSE and
RMSE in regression analysis evaluation. Computer
Science 7:e623.
Chlingaryan, A., S. Sukkarieh, and B. Whelan. 2018. Machine learning
approaches for crop yield prediction and nitrogen status estimation in
precision agriculture: A review. Computers and Electronics in
Agriculture 151:61–69.
Ciani, A. J., C. H. Grein, W. L. Sarney, S. P. Svensson, D. V. Donetski,
and G. L. Belenky. 2020. A
comparison of indium arsenide antimonide and mercury cadmium telluride
as long wavelength infrared detector materials. Journal of Applied
Physics 128:075704.
Costa, L., L. Nunes, and Y. Ampatzidis. 2020. A new visible band
index (vNDVI) for estimating NDVI values on RGB images utilizing genetic
algorithms. Computers and Electronics in Agriculture 172:105334.
Cui, S., and K. Zhou. 2017. A comparison of the
predictive potential of various vegetation indices for leaf chlorophyll
content. Earth Science Informatics 10:169–181.
Daughtry, C. S., C. Walthall, M. Kim, E. B. De Colstoun, and J.
McMurtrey Iii. 2000. Estimating corn
leaf chlorophyll concentration from leaf and canopy reflectance.
Remote Sensing of Environment 74:229–239.
Daun, K. J. 2017. Inverse problems
in radiative transfer. Pages 1–51. Springer International
Publishing.
de la Riva, E. G., M. Olmo, H. Poorter, J. L. Ubera, and R. Villar.
2016. Leaf mass
per area (LMA) and its relationship with leaf structure and anatomy in
34 mediterranean woody species along a water availability gradient.
PloS one 11:e0148788.
Degrave, J., F. Felici, J. Buchli, M. Neunert, B. Tracey, F. Carpanese,
T. Ewalds, R. Hafner, A. Abdolmaleki, D. de Las Casas, and others. 2022.
Magnetic control of
tokamak plasmas through deep reinforcement learning. Nature
602:414–419.
Doktor, D., A. Lausch, D. Spengler, and M. Thurner. 2014. Extraction of plant
physiological status from hyperspectral signatures using machine
learning methods. Remote Sensing 6:12247–12274.
DWR. 2015. California climate science and data for water resources
management. California Department of Water Resources, 715 P Street
Sacramento, CA 95814.
DWR. 2022. California’s water supply strategy – adapting to a hotter,
drier future. California Department of Water Resources, 715 P Street,
Sacramento, CA 95814.
Dyson, M. 2021. Competing
short-wavelength infra-red sensing technologies. Blog post.
El Masry, G., and D.-W. Sun. 2010. Principles of
hyperspectral imaging technology. Pages 3–43 Hyperspectral imaging
for food quality analysis and control. Elsevier.
Evans, J. R. 1989. Photosynthesis and nitrogen
relationships in leaves of C3 plants. Oecologia 78:9–19.
Féret, J.-B., K. Berger, F. De Boissieu, and Z. Malenovskỳ. 2021. PROSPECT-PRO for
estimating content of nitrogen-containing leaf proteins and other
carbon-based constituents. Remote Sensing of Environment 252:112173.
Féret, J.-B., and F. de Boissieu. 2022b. Prosail: PROSAIL leaf and
canopy radiative transfer model and inversion routines.
Féret, J.-B., and F. de Boissieu. 2022a. Prospect: PROSPECT leaf
radiative transfer model and inversion routines.
Féret, J.-B., C. François, G. P. Asner, A. A. Gitelson, R. E. Martin, L.
P. Bidel, S. L. Ustin, G. Le Maire, and S. Jacquemoud. 2008. PROSPECT-4 and 5:
Advances in the leaf optical properties model separating photosynthetic
pigments. Remote Sensing of Environment 112:3030–3043.
Fourty, T., and F. Baret. 1998. On spectral estimates of
fresh leaf biochemistry. International Journal of Remote Sensing
19:1283–1297.
Fourty, T., F. Baret, S. Jacquemoud, G. Schmuck, and J. Verdebout. 1996.
Leaf optical
properties with explicit description of its biochemical composition:
Direct and inverse problems. Remote Sensing of Environment
56:104–117.
Fresnel, A. 1821. Note sur le calcul des teintes que la polarisation
développe dans leslames cristallisées. Annales
de Chimie et de Physique 17:102–111.
Fridman, L. 2019. Deep
learning basics. Lecture.
Fu, Y., G. Yang, Z. Li, X. Song, Z. Li, X. Xu, P. Wang, and C. Zhao.
2020. Winter wheat nitrogen
status estimation using UAV-based RGB imagery and gaussian processes
regression. Remote Sensing 12:3778.
Gao, B.-C., M. J. Montes, C. O. Davis, and A. F. Goetz. 2009. Atmospheric correction
algorithms for hyperspectral remote sensing data of land and ocean.
Remote Sensing of Environment 113:S17–S24.
Gauss, C. F. 1809. Theoria motus corporum coelestium in sectionibus
conicis solem ambientium auctore carolo friderico gauss. Sumtibus Frid.
Perthes et IH Besser.
Geladi, P., and B. R. Kowalski. 1986. Partial
least-squares regression: A tutorial. Analytica chimica acta
185:1–17.
Gewali, U. B., S. T. Monteiro, and E. Saber. 2018. Machine learning based
hyperspectral image analysis: A survey. arXiv.
Gitelson, A. A. 2004. Wide dynamic range
vegetation index for remote quantification of biophysical
characteristics of vegetation. Journal of Plant Physiology
161:165–173.
Gitelson, A. A., Y. Gritz, and M. N. Merzlyak. 2003. Relationships between
leaf chlorophyll content and spectral reflectance and algorithms for
non-destructive chlorophyll assessment in higher plant leaves.
Journal of Plant Physiology 160:271–282.
Gitelson, A. A., Y. J. Kaufman, and M. N. Merzlyak. 1996. Use of a green
channel in remote sensing of global vegetation from EOS-MODIS.
Remote Sensing of Environment 58:289–298.
Goulet, V. 2016. Expint: Exponential
integral and incomplete gamma function.
Gramacy, R. B. 2020. Surrogates: Gaussian process modeling,
design and optimization for the applied sciences. Chapman Hall/CRC,
Boca Raton, Florida.
Grossman, Y., S. Ustin, S. Jacquemoud, E. Sanderson, G. Schmuck, and J.
Verdebout. 1996. Critique of stepwise
multiple linear regression for the extraction of leaf biochemistry
information from leaf reflectance data. Remote Sensing of
Environment 56:182–193.
Guerrero, A., S. De Neve, and A. M. Mouazen. 2021. Current sensor
technologies for in situ and on-line measurement of soil nitrogen for
variable rate fertilization: A review. Advances in Agronomy
168:1–38.
Guo, Y., Y. Liu, T. Georgiou, and M. S. Lew. 2018. A review of semantic
segmentation using deep neural networks. International journal of
multimedia information retrieval 7:87–93.
Guyot, G., D. Guyon, and J. Riom. 1989. Factors affecting the
spectral response of forest canopies: A review. Geocarto
International 4:3–18.
Haboudane, D., J. R. Miller, N. Tremblay, P. J. Zarco-Tejada, and L.
Dextraze. 2002. Integrated
narrow-band vegetation indices for prediction of crop chlorophyll
content for application to precision agriculture. Remote Sensing of
Environment 81:416–426.
Hagen, N. A., and M. W. Kudenov. 2013. Review of snapshot
spectral imaging technologies. Optical Engineering 52:090901.
Hank, T. B., K. Berger, H. Bach, J. G. Clevers, A. Gitelson, P.
Zarco-Tejada, and W. Mauser. 2019. Spaceborne imaging
spectroscopy for sustainable agriculture: Contributions and
challenges. Surveys in Geophysics 40:515–551.
Hansen, P., and J. Schjoerring. 2003. Reflectance
measurement of canopy biomass and nitrogen status in wheat crops using
normalized difference vegetation indices and partial least squares
regression. Remote Sensing of Environment 86:542–553.
Hastie, T., R. Tibshirani, and R. J. Tibshirani. 2017. Extended comparisons of
best subset selection, forward stepwise selection, and the lasso.
arXiv preprint arXiv:1707.08692.
Hawkesford, M., W. Horst, T. Kichey, H. Lambers, J. Schjoerring, I. S.
Møller, and P. White. 2012. Functions of
macronutrients. Pages 135–189 Marschner’s mineral nutrition of
higher plants. Elsevier.
Herrmann, I., A. Karnieli, D. Bonfil, Y. Cohen, and V. Alchanatis. 2010.
SWIR-based spectral
indices for assessing nitrogen content in potato fields.
International Journal of Remote Sensing 31:5127–5143.
Holthaus, E. 2015. 10 percent of california’s water goes to almond
farming. That’s nuts.’. Slate Magazine.
Homolová, L., Z. Malenovskỳ, J. G. Clevers, G. Garcı́a-Santos, and M. E.
Schaepman. 2013. Review of
optical-based remote sensing for plant trait mapping. Ecological
Complexity 15:1–16.
Hosgood, B., S. Jacquemoud, G. Andreoli, J. Verdebout, G. Pedrini, and
G. Schmuck. 1995. Leaf optical properties experiment 93 (LOPEX93).
Report EUR 16095.
Huete, A. R. 1988. A soil-adjusted
vegetation index (SAVI). Remote Sensing of Environment 25:295–309.
Huete, A., K. Didan, T. Miura, E. P. Rodriguez, X. Gao, and L. G.
Ferreira. 2002. Overview of the
radiometric and biophysical performance of the MODIS vegetation
indices. Remote Sensing of Environment 83:195–213.
Hunt Jr, E. R., P. C. Doraiswamy, J. E. McMurtrey, C. S. Daughtry, E. M.
Perry, and B. Akhmedov. 2013. A visible band index
for remote sensing leaf chlorophyll content at the canopy scale.
International journal of applied earth observation and geoinformation
21:103–112.
Ihuoma, S. O., and C. A. Madramootoo. 2017. Recent advances in
crop water stress detection. Computers and Electronics in
Agriculture 141:267–275.
Inoue, Y., E. Sakaiya, Y. Zhu, and W. Takahashi. 2012. Diagnostic mapping of
canopy nitrogen content in rice based on hyperspectral measurements.
Remote Sensing of Environment 126:210–221.
Ioffe, S., and C. Szegedy. 2015. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. Pages 448–456
International conference on machine learning. pmlr.
ISO. 2022. Thermal insulation — heat transfer by radiation — vocabulary.
Standard, International Organization for Standardization, Geneva, CH.
Jackson, R. D., S. Idso, R. Reginato, and P. Pinter Jr. 1981. Canopy temperature as a
crop water stress indicator. Water resources research 17:1133–1138.
Jacquemoud, S. 1992. Utilisation de la haute resolution spectrale pour
l’etude des couverts vegetaux: Developpement d’un modele de reflectance
spectrale. PhD thesis, Université Paris Diderot-Paris 7.
Jacquemoud, S., C. Bacour, H. Poilve, and J.-P. Frangi. 2000. Comparison of four
radiative transfer models to simulate plant canopies reflectance: Direct
and inverse mode. Remote Sensing of Environment 74:471–481.
Jacquemoud, S., and F. Baret. 1990. PROSPECT: A model of
leaf optical properties spectra. Remote Sensing of Environment
34:75–91.
Jacquemoud, S., S. Ustin, J. Verdebout, G. Schmuck, G. Andreoli, and B.
Hosgood. 1996. Estimating leaf
biochemistry using the PROSPECT leaf optical properties model.
Remote Sensing of Environment 56:194–202.
Jacquemoud, S., W. Verhoef, F. Baret, C. Bacour, P. Zarco-Tejada, G.
Asner, C. François, and S. Ustin. 2009. PROSPECT + SAIL models:
A review of use for vegetation characterization. Remote Sensing of
Environment 113:S56–S66.
Jafarbiglu, H., and A. Pourreza. 2022. A comprehensive
review of remote sensing platforms, sensors, and applications in nut
crops. Computers and Electronics in Agriculture 197:106844.
Jafarbiglu, H., and A. Pourreza. 2023. Impact of
sun-view geometry on canopy spectral reflectance variability. ISPRS
Journal of Photogrammetry and Remote Sensing 196:270–286.
James, G., D. Witten, T. Hastie, and R. Tibshirani. 2013. An introduction to
statistical learning. Springer.
Jianbo, Q. 2022. LESS user’s manual. 2.0 edition.
Jin, D., J. Qi, H. Huang, and L. Li. 2021. Combining 3D
radiative transfer model and convolutional neural network to accurately
estimate forest canopy cover from very high-resolution satellite
images. IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing 14:10953–10963.
Jin, X., Z. Li, H. Feng, X. Xu, and G. Yang. 2014. Newly combined
spectral indices to improve estimation of total leaf chlorophyll content
in cotton. IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing 7:4589–4600.
Jin, Y., B. Chen, B. D. Lampinen, and P. H. Brown. 2020. Advancing agricultural
production with machine learning analytics: Yield determinants for
california’s almond orchards. Frontiers in Plant Science 11:290.
Johnson, M. D., W. W. Hsieh, A. J. Cannon, A. Davidson, and F. Bédard.
2016. Crop yield forecasting on the canadian prairies by remotely sensed
vegetation indices and machine learning methods. Agricultural and forest
meteorology 218:74–84.
Jordan, C. F. 1969. Derivation
of leaf-area index from quality of light on the forest floor.
Ecology 50:663–666.
Jordan, M. I., and T. M. Mitchell. 2015. Machine learning: Trends,
perspectives, and prospects. Science 349:255–260.
Jumper, J., R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger,
K. Tunyasuvunakool, R. Bates, A. Žı́dek, A. Potapenko, and others. 2021.
Highly accurate
protein structure prediction with AlphaFold. Nature 596:583–589.
Justes, E., B. Mary, J.-M. Meynard, J.-M. Machet, and L. Thelier-Huché.
1994. Determination of
a critical nitrogen dilution curve for winter wheat crops. Annals of
botany 74:397–407.
Kapoor, A., and T. Viraraghavan. 1997. Nitrate
removal from drinking water. Journal of environmental engineering
123:371–380.
Kaufman, Y. J., and D. Tanre. 1992. Atmospherically resistant
vegetation index (ARVI) for EOS-MODIS. IEEE Transactions on
Geoscience and Remote Sensing 30:261–270.
Khalsa, S. D. S., and P. H. Brown. 2018. Understanding
nitrogen cycling in an irrigated deciduous permanent crop. Pages
207–212 XXX international horticultural congress IHC2018: International
symposium on water and nutrient relations and management of 1253.
Kimes, D., Y. Knyazikhin, J. Privette, A. Abuelgasim, and F. Gao. 2000.
Inversion methods
for physically-based models. Remote Sensing Reviews 18:381–439.
Kokaly, R. F., G. P. Asner, S. V. Ollinger, M. E. Martin, and C. A.
Wessman. 2009. Characterizing canopy
biochemistry from imaging spectroscopy and its application to ecosystem
studies. Remote Sensing of Environment 113:S78–S91.
Kuhn, M. 2022. Caret:
Classification and regression training.
Kuhn, M., and R. Quinlan. 2023. Cubist: Rule- and
instance-based regression modeling.
Lambert, J. H. 1760. Photometria sive de mensura et gradibus luminis,
colorum et umbrae. Sumptibus vidvae E. Klett, typis CP Detleffsen.
Legendre, A. M. 1806. Nouvelles méthodes pour la
détermination des orbites des comètes; par AM
legendre... chez Firmin Didot, libraire pour lew mathematiques, la
marine, l ….
Li, Y., N. He, J. Hou, L. Xu, C. Liu, J. Zhang, Q. Wang, X. Zhang, and
X. Wu. 2018. Factors
influencing leaf chlorophyll content in natural forests at the biome
scale. Frontiers in Ecology and Evolution 6:64.
Liaw, A., and M. Wiener. 2002. Classification and
regression by randomForest. R News 2:18–22.
Liland, K. H., B.-H. Mevik, and R. Wehrens. 2022. Pls: Partial least squares
and principal component regression.
Lin, D., M. Kettunen, B. Bitterli, J. Pantaleoni, C. Yuksel, and C.
Wyman. 2022. Generalized
resampled importance sampling: Foundations of ReSTIR. ACM
Transactions on Graphics (TOG) 41:1–23.
Liu, C., X. Zhang, T. T. Nguyen, J. Liu, T. Wu, E. Lee, and X. M. Tu.
2022. Partial least
squares regression and principal component analysis: Similarity and
differences between two popular variable reduction approaches.
General Psychiatry 35.
Malenovskỳ, Z., L. Homolová, R. Zurita-Milla, P. Lukeš, V. Kaplan, J.
Hanuš, J.-P. Gastellu-Etchegorry, and M. E. Schaepman. 2013. Retrieval of spruce
leaf chlorophyll content from airborne image data using continuum
removal and radiative transfer. Remote Sensing of Environment
131:85–102.
Markov, A. A. 1912. Wahrscheinlichkeitsrechnung. BG Teubner.
McCulloch, W. S., and W. Pitts. 1943. A logical calculus of the ideas
immanent in nervous activity. The bulletin of mathematical biophysics
5:115–133.
Mehmood, T., and B. Ahmed. 2016. The diversity in the
applications of partial least squares: An overview. Journal of
Chemometrics 30:4–17.
Micke, W. 1996. Almond production manual. Regents of the University of
California.
Moghimi, A., A. Pourreza, G. Zuniga-Ramirez, L. E. Williams, and M. W.
Fidelibus. 2020. A novel
machine learning approach to estimate grapevine leaf nitrogen
concentration using aerial multispectral imagery. Remote Sensing
12:3515.
Mount, J., and E. Hanak. 2016. Water use in california. Public Policy
Institute of California, San Francisco, California 2.
Muñoz-Huerta, R. F., R. G. Guevara-Gonzalez, L. M. Contreras-Medina, I.
Torres-Pacheco, J. Prado-Olivarez, and R. V. Ocampo-Velazquez. 2013. A review of methods for
sensing the nitrogen status in plants: Advantages, disadvantages and
recent advances. sensors 13:10823–10843.
National Renewable Energy Laboratory. 2022. 2000
ASTM standard extraterrestrial spectrum reference e-490-00. Webpage.
Nawi, N. M., W. H. Atomi, and M. Z. Rehman. 2013. The effect of data
pre-processing on optimized training of artificial neural networks.
Procedia Technology 11:32–39.
Noda, T. R. A. M. C. A. J. K. A. G. L. A. Y. N. A. M. I. A. H. 2023.
Stockfish. https://github.com/official-stockfish/Stockfish; GitHub.
Ohyama, T. 2010. Nitrogen as a major essential element of plants.
Nitrogen assimilation in plants 37:2–17.
Omidi, R., A. Moghimi, A. Pourreza, M. El-Hadedy, and A. S. Eddin. 2020.
Ensemble
hyperspectral band selection for detecting nitrogen status in grape
leaves. IEEE.
OpenAI. 2023. GPT-4
technical report. OpenAI.
Padilla, F. M., R. de Souza, M. T. Peña-Fleitas, M. Gallardo, C.
Gimenez, and R. B. Thompson. 2018. Different responses of
various chlorophyll meters to increasing nitrogen supply in sweet
pepper. Frontiers in plant science 9:1752.
Pancorbo, J., C. Camino, M. Alonso-Ayuso, M. Raya-Sereno, I.
Gonzalez-Fernandez, J. L. Gabriel, P. J. Zarco-Tejada, and M. Quemada.
2021. Simultaneous
assessment of nitrogen and water status in winter wheat using
hyperspectral and thermal sensors. European Journal of Agronomy
127:126287.
Pathak, T. B., M. L. Maskey, J. A. Dahlberg, F. Kearns, K. M. Bali, and
D. Zaccaria. 2018. Climate change trends and
impacts on california agriculture: A detailed review. Agronomy 8:25.
Peddie, J. 2019. Ray
tracing: A tool for all. Springer.
Peñuelas, J., J. Gamon, A. Fredeen, J. Merino, and C. Field. 1994. Reflectance indices
associated with physiological changes in nitrogen-and water-limited
sunflower leaves. Remote Sensing of Environment 48:135–146.
Perich, G., P. Meyer, A. Wieser, and F. Liebisch. 2021. Proximal and
drone based hyperspectral sensing for crop nitrogen status detection in
historic field trials. Pages 1–5 2021 11th workshop on hyperspectral
imaging and signal processing: Evolution in remote sensing (WHISPERS).
IEEE.
Pierce, F. J., and P. Nowak. 1999. Aspects of
precision agriculture. Advances in Agronomy 67:1–85.
Plackett, R. L. 1949. A
historical note on the method of least squares. Biometrika
36:458–460.
QGIS Development Team. 2022. QGIS
geographic information system. QGIS Association.
Qi, J., A. Chehbouni, A. R. Huete, Y. H. Kerr, and S. Sorooshian. 1994.
A modified soil
adjusted vegetation index. Remote Sensing of Environment 48:119–126.
Qi, J., J. Jiang, K. Zhou, D. Xie, and H. Huang. 2023. Fast and accurate
simulation of canopy reflectance under wavelength-dependent optical
properties using a semi-empirical 3D radiative transfer model.
Journal of Remote Sensing 3:0017.
Qi, J., D. Xie, D. Guo, and G. Yan. 2017. A large-scale
emulation system for realistic three-dimensional (3-d) forest
simulation. IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing 10:4834–4843.
Qi, J., D. Xie, J. Jiang, and H. Huang. 2022. 3D radiative transfer
modeling of structurally complex forest canopies through a lightweight
boundary-based description of leaf clusters. Remote Sensing of
Environment 283:113301.
Qi, J., D. Xie, T. Yin, G. Yan, J.-P. Gastellu-Etchegorry, L. Li, W.
Zhang, X. Mu, and L. K. Norford. 2019. LESS: LargE-scale
remote sensing data and image simulation framework over heterogeneous 3D
scenes. Remote Sensing of Environment 221:695–706.
R Core Team. 2022. R: A language
and environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria.
Raun, W. R., G. Johnson, and R. Westerman. 1999. Fertilizer
nitrogen recovery in long-term continuous winter wheat. Soil Science
Society of America Journal 63:645–650.
Ravikanth, L., D. S. Jayas, N. D. White, P. G. Fields, and D.-W. Sun.
2017. Extraction of
spectral information from hyperspectral data and application of
hyperspectral imaging for food and agricultural products. Food and
bioprocess technology 10:1–33.
Ren-hua, Z., N. Rao, and K. Liao. 1996. Approach for a vegetation index
resistant to atmospheric effect. Journal of Integrative Plant Biology
38.
Richardson, A. J., and C. Wiegand. 1977. Distinguishing vegetation from
soil background information. Photogrammetric engineering and remote
sensing 43:1541–1552.
Rohde, R. A. 2013. Spectrum
of solar radiation. Webpage.
Rombach, R., A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. 2021. High-resolution image synthesis
with latent diffusion models.
Rosenblatt, F. 1958. The
perceptron: A probabilistic model for information storage and
organization in the brain. Psychological review 65:386.
Rosipal, R., and N. Krämer. 2006. Overview and recent advances
in partial least squares. Pages 34–51 Subspace, latent structure and
feature selection: Statistical and optimization perspectives workshop,
SLSFS 2005, bohinj, slovenia, february 23-25, 2005, revised selected
papers. Springer.
Rouse Jr, J. W., R. H. Haas, J. Schell, and D. Deering. 1973. Monitoring the vernal
advancement and retrogradation (green wave effect) of natural
vegetation. Texas A&M University Remote Sensing Center.
Rudin, C. 2019. Stop
explaining black box machine learning models for high stakes decisions
and use interpretable models instead. Nature machine intelligence
1:206–215.
Sáez-Plaza, P., M. J. Navas, S. Wybraniec, T. Michałowski, and A. G.
Asuero. 2013. An
overview of the kjeldahl method of nitrogen determination. Part II.
Sample preparation, working scale, instrumental finish, and quality
control. Critical Reviews in Analytical Chemistry 43:224–272.
Samuel, A. L. 1959. Machine learning. The Technology Review 62:42–45.
Schirrmann, M., A. Giebel, F. Gleiniger, M. Pflanz, J. Lentschke, and
K.-H. Dammer. 2016. Monitoring agronomic parameters
of winter wheat crops with low-cost UAV imagery. Remote Sensing
8:706.
Schowengerdt, R. A. 2006. Remote sensing: Models and methods for image
processing. Elsevier.
Selan, J. 2005. Using lookup tables to accelerate color transformations.
GPU Gems 2:381–392.
Serrano, L., J. Penuelas, and S. L. Ustin. 2002. Remote sensing of
nitrogen and lignin in mediterranean vegetation from AVIRIS data:
Decomposing biochemical from structural signals. Remote sensing of
Environment 81:355–364.
Shiklomanov, A. N., M. C. Dietze, I. Fer, T. Viskari, and S. P. Serbin.
2021. Cutting out the
middleman: Calibrating and validating a dynamic vegetation model
(ED2-PROSPECT5) using remotely sensed surface reflectance.
Geoscientific Model Development 14:2603–2633.
Silver, D., J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A.
Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, and others. 2017. Mastering the game of go
without human knowledge. Nature 550:354–359.
Sishodia, R. P., R. L. Ray, and S. K. Singh. 2020. Applications of remote sensing
in precision agriculture: A review. Remote Sensing 12:3136.
Smart, D., D. Schellenberg, S. Saa Silva, S. Muhammad, B. Sanden, and P.
Brown. 2014. Nitrogen use efficiency of california almond orchards using
advanced farming practices. Page 487 EGU general assembly conference
abstracts.
Sonobe, R., Y. Yamaya, H. Tani, X. Wang, N. Kobayashi, and K. Mochizuki.
2018. Crop
classification from sentinel-2-derived vegetation indices using ensemble
learning. Journal of Applied Remote Sensing 12:026019–026019.
Spafford, L., G. Le Maire, A. MacDougall, F. De Boissieu, and J.-B.
Feret. 2021. Spectral subdomains and
prior estimation of leaf structure improves PROSPECT inversion on
reflectance or transmittance alone. Remote Sensing of Environment
252:112176.
Stark, C. H., and K. G. Richards. 2008. The continuing challenge of
agricultural nitrogen loss to the environment in the context of global
change and advancing research. Dynamic Soil, Dynamic Plant 2:1–12.
Stern, F. 1964. Transmission of isotropic
radiation across an interface between two dielectrics. Applied
Optics 3:111–113.
Stickler, G., and L. Kyle. 2016. Educational brief – solar radiation and
the earth system. National Aeronautics and Space Administration.
Stone, M. 1974. Cross-validatory
choice and assessment of statistical predictions. Journal of the
royal statistical society: Series B (Methodological) 36:111–133.
Takayama, T., and A. Iwasaki. 2016. Optimal
wavelength selection on hyperspectral data with fused lasso for biomass
estimation of tropical rainforests. ISPRS Annals of Photogrammetry,
Remote Sensing & Spatial Information Sciences 3.
Thenkabail, P. S., I. Mariotto, M. K. Gumma, E. M. Middleton, D. R.
Landis, and K. F. Huemmrich. 2013. Selection of
hyperspectral narrowbands (HNBs) and composition of hyperspectral
twoband vegetation indices (HVIs) for biophysical characterization and
discrimination of crop types using field reflectance and hyperion/EO-1
data. IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing 6:427–439.
Thomas, J. R., and G. F. Oerther. 1972. Estimating
nitrogen content of sweet pepper leaves by reflectance measurements.
Agronomy journal 64:11–13.
Tian, Y., X. Yao, J. Yang, W. Cao, D. Hannaway, and Y. Zhu. 2011. Assessing newly
developed and published vegetation indices for estimating rice leaf
nitrogen concentration with ground-and space-based hyperspectral
reflectance. Field Crops Research 120:299–310.
Tibshirani, R. 1996. Regression
shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological) 58:267–288.
USDA. 2021. California almond acreage report. United States Department
of Agriculture, Pacific Region, P.O. Box 1258, Sacramento, CA 95812.
Van den Berg, H. 2018. Occam’s razor:
From ockham’s via moderna to modern data science. Science progress
101:261–272.
Verger, A., F. Baret, and F. Camacho. 2011. Optimal modalities for
radiative transfer-neural network estimation of canopy biophysical
characteristics: Evaluation over an agricultural area with CHRIS/PROBA
observations. Remote Sensing of Environment 115:415–426.
Verhoef, W. 1984. Light scattering by
leaf layers with application to canopy reflectance modeling: The SAIL
model. Remote Sensing of Environment 16:125–141.
Verhoef, W. 1985. Earth observation
modeling based on layer scattering matrices. Remote Sensing of
Environment 17:165–178.
Verhoef, W., L. Jia, Q. Xiao, and Z. Su. 2007. Unified optical-thermal
four-stream radiative transfer theory for homogeneous vegetation
canopies. IEEE Transactions on geoscience and remote sensing
45:1808–1822.
Verrelst, J., S. Dethier, J. P. Rivera, J. Munoz-Mari, G. Camps-Valls,
and J. Moreno. 2016. Active learning methods
for efficient hybrid biophysical variable retrieval. IEEE Geoscience
and Remote Sensing Letters 13:1012–1016.
Verrelst, J., Z. Malenovskỳ, C. Van der Tol, G. Camps-Valls, J.-P.
Gastellu-Etchegorry, P. Lewis, P. North, and J. Moreno. 2019. Quantifying vegetation
biophysical variables from imaging spectroscopy data: A review on
retrieval methods. Surveys in Geophysics 40:589–629.
Verrelst, J., and J. Rivera. 2017. A global
sensitivity analysis toolbox to quantify drivers of vegetation radiative
transfer models. Pages 319–339 Sensitivity analysis in earth
observation modelling. Elsevier.
Verrelst, J., J. P. Rivera, J. Gómez-Dans, G. Camps-Valls, and J.
Moreno. 2015. Replacing radiative
transfer models by surrogate approximations through machine
learning. Pages 633–636 2015 IEEE international geoscience and
remote sensing symposium (IGARSS). IEEE.
Viers, J. H., D. Liptzin, T. S. Rosenstock, V. B. Jensen, A. D.
Hollander, A. McNally, A. M. King, G. Kourakos, E. M. Lopez, N. D. L.
Mora, A. FryjoffHung, H. C. Kristin N. Dzurella, S. Laybourne, C.
McKenney, J. Darby, J. F. Quinn, and T. Harter. 2012. Assessing nitrate
in california’s drinking water with a focus on tulare lake basin and
salinas valley groundwater. Center for Watershed Sciences,
University of California, Davis.
VineView. 2022. Water index.
Webpage.
Vinyals, O., I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J.
Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev, and others. 2019.
Grandmaster level in
StarCraft II using multi-agent reinforcement learning. Nature
575:350–354.
Vitousek, P. M., J. D. Aber, R. W. Howarth, G. E. Likens, P. A. Matson,
D. W. Schindler, W. H. Schlesinger, and D. G. Tilman. 1997. Human
alteration of the global nitrogen cycle: Sources and consequences.
Ecological applications 7:737–750.
Wade, T., S. Sommer, and others. 2006. A to z GIS, an illustrated
dictionary of geographic information systems. Esri Press.
Walter, A., R. Finger, R. Huber, and N. Buchmann. 2017. Smart farming is key to
developing sustainable agriculture. Proceedings of the National
Academy of Sciences 114:6148–6150.
Wang, J., C. Shen, N. Liu, X. Jin, X. Fan, C. Dong, and Y. Xu. 2017. Non-destructive evaluation of
the leaf nitrogen concentration by in-field visible/near-infrared
spectroscopy in pear orchards. Sensors 17:538.
Webb, J., P. Sørensen, G. Velthof, B. Amon, M. Pinto, L. Rodhe, E.
Salomon, N. Hutchings, P. Burczyk, and J. Reid. 2013. An assessment
of the variation of manure nitrogen efficiency throughout europe and an
appraisal of means to increase manure-n efficiency. Advances in
Agronomy 119:371–442.
Weber, A., M. Benecke, J. Wendler, A. Sieck, D. Hübner, H. Figgemeier,
and R. Breiter. 2016. Extended SWIR imaging sensors
for hyperspectral imaging applications. Pages 42–56 Image sensing
technologies: Materials, devices, systems, and applications III. SPIE.
Wheeler, R. 2011. Diagram
of the internal structure of a leaf. Webpage.
WIFSS. 2016. Almonds.
Western Institute for Food Safety and Security, 1477 Drew
Ave, Davis, CA 95618.
Willett, J. B., and J. D. Singer. 1988. Another cautionary
note about r2: Its use in
weighted least-squares regression analysis. The American
Statistician 42:236–238.
Wold, S., A. Ruhe, H. Wold, and W. Dunn Iii. 1984. The collinearity problem in
linear regression. The partial least squares (PLS) approach to
generalized inverses. SIAM Journal on Scientific and Statistical
Computing 5:735–743.
Wolfert, S., L. Ge, C. Verdouw, and M.-J. Bogaardt. 2017. Big data in smart
farming–a review. Agricultural Systems 153:69–80.
Wright, I. J., P. B. Reich, M. Westoby, D. D. Ackerly, Z. Baruch, F.
Bongers, J. Cavender-Bares, T. Chapin, J. H. Cornelissen, M. Diemer, and
others. 2004. The
worldwide leaf economics spectrum. Nature 428:821–827.
Wright, S. 1921. Correlation and causation. Journal of Agricultural
Research 20:557–585.
Wyman, C., and A. Panteleev. 2021. Rearchitecting spatiotemporal
resampling for production. Pages 23–41 Proceedings of the conference on
high-performance graphics.
Xue, J., and B. Su. 2017. Significant remote sensing
vegetation indices: A review of developments and applications.
Journal of sensors 2017:1–17.
Yan, X., and X. Su. 2009. Linear
regression analysis: Theory and computing. world scientific.
Yang, P., C. van der Tol, T. Yin, and W. Verhoef. 2020. The SPART model: A
soil-plant-atmosphere radiative transfer model for satellite
measurements in the solar spectrum. Remote Sensing of Environment
247:111870.
Yang, X., X. Wu, H. Hao, and Z. He. 2008. Mechanisms and assessment
of water eutrophication. Journal of zhejiang university Science B
9:197–209.
Yokoya, N., and A. Iwasaki. 2013. Hyperspectral and multispectral data
fusion mission on hyperspectral imager suite (HISUI). Pages 4086–4089
2013 IEEE international geoscience and remote sensing symposium-IGARSS.
IEEE.
Zha, H., Y. Miao, T. Wang, Y. Li, J. Zhang, W. Sun, Z. Feng, and K.
Kusnierek. 2020. Improving
unmanned aerial vehicle remote sensing-based rice nitrogen nutrition
index prediction with machine learning. Remote Sensing 12:215.
Zhang, N., M. Wang, and N. Wang. 2002. Precision
agriculture—a worldwide overview. Computers and electronics in
agriculture 36:113–132.
Zhang, Q., X. Xiao, B. Braswell, E. Linder, F. Baret, and B. Moore III.
2005. Estimating
light absorption by chlorophyll, leaf and canopy in a deciduous
broadleaf forest using MODIS data and a radiative transfer model.
Remote Sensing of Environment 99:357–371.
Zhang, Z., Y. Jin, B. Chen, and P. Brown. 2019. California almond yield
prediction at the orchard level with a machine learning approach.
Frontiers in plant science 10:809.
Zheng, G., and M. Moskal. 2009. Retrieving leaf area index
(LAI) using remote sensing: Theories, methods and sensors. Sensors
9:2719–2745.
Zheng, H., T. Cheng, D. Li, X. Zhou, X. Yao, Y. Tian, W. Cao, and Y.
Zhu. 2018. Evaluation of
RGB, color-infrared and multispectral images acquired from unmanned
aerial systems for the estimation of nitrogen accumulation in rice.
Remote Sensing 10:824.
Zhu, X. X., D. Tuia, L. Mou, G.-S. Xia, L. Zhang, F. Xu, and F.
Fraundorfer. 2017. Deep learning in remote
sensing: A comprehensive review and list of resources. IEEE
Geoscience and Remote Sensing Magazine 5:8–36.
Zou, H., and T. Hastie. 2005. Regularization
and variable selection via the elastic net. Journal of the royal
statistical society: series B (statistical methodology) 67:301–320.