References

ABC. 2020. Growing good – almond sustainability. Almond Board of California, 1150 Ninth Street, Suite 1500, Modesto, CA95354.
Akaike, H. 1998. Information theory and an extension of the maximum likelihood principle. Selected papers of Hirotugu Akaike:199–213.
Allen, W. A. 1973. Transmission of isotropic light across a dielectric surface in two and three dimensions. JOSA 63:664–666.
Allen, W. A., H. W. Gausman, A. J. Richardson, and J. R. Thomas. 1969. Interaction of isotropic light with a compact plant leaf. JOSA 59:1376–1379.
Allen, W. A., H. Gausman, and A. Richardson. 1973. Willstätter-stoll theory of leaf reflectance evaluated by ray tracing. Applied Optics 12:2448–2453.
Asner, G. P., and R. E. Martin. 2009. Airborne spectranomics: Mapping canopy chemical and taxonomic diversity in tropical forests. Frontiers in Ecology and the Environment 7:269–276.
Atzberger, C., K. Richter, F. Vuolo, R. Darvishzadeh, and M. Schlerf. 2011. Why confining to vegetation indices? Exploiting the potential of improved spectral observations using radiative transfer models. Pages 263–278 Remote sensing for agriculture, ecosystems, and hydrology XIII. SPIE.
Bailey, B. N. 2019. Helios: A scalable 3D plant and environmental biophysical modeling framework. Frontiers in Plant Science 10:1185.
Bailey, B. N., and W. F. Mahaffee. 2017. Rapid measurement of the three-dimensional distribution of leaf orientation and the leaf angle probability density function using terrestrial LiDAR scanning. Remote Sensing of Environment 194:63–76.
Bailey, B. N., M. A. Ponce de León, and E. S. Krayenhoff. 2020. One-dimensional models of radiation transfer in heterogeneous canopies: A review, re-evaluation, and improved model. Geoscientific Model Development 13:4789–4808.
Baret, F., and T. Fourty. 1997. Estimation of leaf water content and specific leaf weight from reflectance and transmittance measurements. Agronomie 17:455–464.
Baret, F., V. Houlès, and M. Guerif. 2007. Quantification of plant stress using remote sensing observations and crop models: The case of nitrogen management. Journal of experimental botany 58:869–880.
Baret, F., S. Jacquemoud, G. Guyot, and C. Leprieur. 1992. Modeled analysis of the biophysical nature of spectral shifts and comparison with information content of broad bands. Remote Sensing of Environment 41:133–142.
Baret, F., S. Jacquemoud, and J. Hanocq. 1993. The soil line concept in remote sensing. Remote Sensing Reviews 7:65–82.
Barnes, E., T. Clarke, S. Richards, P. Colaizzi, J. Haberland, M. Kostrzewski, P. Waller, C. Choi, E. Riley, T. Thompson, and others. 2000. Coincident detection of crop water stress, nitrogen status and canopy density using ground based multispectral data. Page 6 Proceedings of the fifth international conference on precision agriculture, bloomington, MN, USA.
Beer, A. 1852. Bestimmung der absorption des rothen lichts in farbigen flussigkeiten. Ann. Physik 162:78–88.
Bennett, K., and M. Embrechts. 2003. An optimization perspective on kernel partial least squares regression. Nato Science Series sub series III computer and systems sciences 190:227–250.
Berger, K., C. Atzberger, M. Danner, G. D’Urso, W. Mauser, F. Vuolo, and T. Hank. 2018. Evaluation of the PROSAIL model capabilities for future hyperspectral model environments: A review study. Remote Sensing 10:85.
Berger, K., J. Verrelst, J.-B. Feret, Z. Wang, M. Wocher, M. Strathmann, M. Danner, W. Mauser, and T. Hank. 2020. Crop nitrogen monitoring: Recent progress and principal developments in the context of imaging spectroscopy missions. Remote Sensing of Environment 242:111758.
Bioucas-Dias, J. M., A. Plaza, G. Camps-Valls, P. Scheunders, N. Nasrabadi, and J. Chanussot. 2013. Hyperspectral remote sensing data analysis and future challenges. IEEE Geoscience and remote sensing magazine 1:6–36.
Bjerga, A., D. Cohen, and C. Hoffman. 2018. California almonds are back after four years of brutal drought. Bloomberg.
Bloem, E., S. Haneklaus, and E. Schnug. 2005. Influence of nitrogen and sulfur fertilization on the alliin content of onions and garlic. Journal of Plant Nutrition 27:1827–1839.
Blumthaler, M., W. Ambach, and R. Ellinger. 1997. Increase in solar UV radiation with altitude. Journal of photochemistry and Photobiology B: Biology 39:130–134.
Bolster, K. L., M. E. Martin, and J. D. Aber. 1996. Determination of carbon fraction and nitrogen concentration in tree foliage by near infrared reflectances: A comparison of statistical methods. Canadian journal of forest research 26:590–600.
Borchers, H. W. 2022. Pracma: Practical numerical math functions.
Breiman, L. 2001. Random forests. Machine Learning 45:5–32.
Brown, P. H., S. Saa, S. Muhammad, and S. D. Khalsa. 2020. Nitrogen best management practices. Almond Board of California, 1150 Ninth Street, Suite 1500, Modesto, CA 95354.
Bruno, E. M., B. Goodrich, and R. J. Sexton. 2021. The outlook for california’s almond market. Calif. Almond Acreage Rep 24:9–11.
Bruno, T. J., and P. D. Svoronos. 2005. CRC handbook of fundamental spectroscopic correlation charts. CRC Press.
Bubeck, S., V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E. Kamar, P. Lee, Y. T. Lee, Y. Li, S. Lundberg, and others. 2023. Sparks of artificial general intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712.
Burke, M., A. Driscoll, D. B. Lobell, and S. Ermon. 2021. Using satellite imagery to understand and promote sustainable development. Science 371:eabe8628.
Byrnes, J. 2009. Unexploded ordnance detection and mitigation. Springer Science & Business Media.
Camino, C., R. Calderón, S. Parnell, H. Dierkes, Y. Chemin, M. Román-Écija, M. Montes-Borrego, B. B. Landa, J. A. Navas-Cortes, P. J. Zarco-Tejada, and others. 2021. Detection of xylella fastidiosa in almond orchards by synergic use of an epidemic spread model and remotely sensed plant traits. Remote Sensing of Environment 260:112420.
Camino, C., V. González-Dugo, P. Hernández, J. Sillero, and P. J. Zarco-Tejada. 2018. Improved nitrogen retrievals with airborne-derived fluorescence and plant traits quantified from VNIR-SWIR hyperspectral imagery in the context of precision agriculture. International journal of applied earth observation and geoinformation 70:105–117.
Camps-Valls, G., D. Tuia, L. Gómez-Chova, S. Jiménez, and J. Malo. 2011. Remote sensing image processing. Synthesis Lectures on Image, Video, and Multimedia Processing 5:1–192.
Castaldi, F., A. Castrignanò, and R. Casa. 2016. A data fusion and spatial data analysis approach for the estimation of wheat grain nitrogen uptake from satellite data. International Journal of Remote Sensing 37:4317–4336.
CDFA. 2020. California agriculture exports 2019-2020. California Department of Food and Argiculture, 1220 N Street, Sacramento, CA 95812.
Ceres Imaging. 2022. Water stress index. Webpage.
Chapin, F. S., A. J. Bloom, C. B. Field, and R. H. Waring. 1987. Plant responses to multiple environmental factors. Bioscience 37:49–57.
Chen, T., and C. Guestrin. 2016. XGBoost: A scalable tree boosting system. Pages 785–794 Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining.
Chen, T., T. He, M. Benesty, V. Khotilovich, Y. Tang, H. Cho, K. Chen, R. Mitchell, I. Cano, T. Zhou, M. Li, J. Xie, M. Lin, Y. Geng, Y. Li, and J. Yuan. 2022. Xgboost: Extreme gradient boosting.
Cheng, X., G. Yang, X. Xu, T. Chen, Z. Li, H. Feng, D. Wang, and others. 2014. Estimating canopy water content in wheat based on new vegetation water index. Spectroscopy and Spectral Analysis 34:3391–3396.
Chicco, D., M. J. Warrens, and G. Jurman. 2021. The coefficient of determination r-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. Computer Science 7:e623.
Chlingaryan, A., S. Sukkarieh, and B. Whelan. 2018. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Computers and Electronics in Agriculture 151:61–69.
Ciani, A. J., C. H. Grein, W. L. Sarney, S. P. Svensson, D. V. Donetski, and G. L. Belenky. 2020. A comparison of indium arsenide antimonide and mercury cadmium telluride as long wavelength infrared detector materials. Journal of Applied Physics 128:075704.
Costa, L., L. Nunes, and Y. Ampatzidis. 2020. A new visible band index (vNDVI) for estimating NDVI values on RGB images utilizing genetic algorithms. Computers and Electronics in Agriculture 172:105334.
Cui, S., and K. Zhou. 2017. A comparison of the predictive potential of various vegetation indices for leaf chlorophyll content. Earth Science Informatics 10:169–181.
Daughtry, C. S., C. Walthall, M. Kim, E. B. De Colstoun, and J. McMurtrey Iii. 2000. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment 74:229–239.
Daun, K. J. 2017. Inverse problems in radiative transfer. Pages 1–51. Springer International Publishing.
de la Riva, E. G., M. Olmo, H. Poorter, J. L. Ubera, and R. Villar. 2016. Leaf mass per area (LMA) and its relationship with leaf structure and anatomy in 34 mediterranean woody species along a water availability gradient. PloS one 11:e0148788.
Degrave, J., F. Felici, J. Buchli, M. Neunert, B. Tracey, F. Carpanese, T. Ewalds, R. Hafner, A. Abdolmaleki, D. de Las Casas, and others. 2022. Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602:414–419.
Doktor, D., A. Lausch, D. Spengler, and M. Thurner. 2014. Extraction of plant physiological status from hyperspectral signatures using machine learning methods. Remote Sensing 6:12247–12274.
DWR. 2015. California climate science and data for water resources management. California Department of Water Resources, 715 P Street Sacramento, CA 95814.
DWR. 2022. California’s water supply strategy – adapting to a hotter, drier future. California Department of Water Resources, 715 P Street, Sacramento, CA 95814.
Dyson, M. 2021. Competing short-wavelength infra-red sensing technologies. Blog post.
El Masry, G., and D.-W. Sun. 2010. Principles of hyperspectral imaging technology. Pages 3–43 Hyperspectral imaging for food quality analysis and control. Elsevier.
Evans, J. R. 1989. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78:9–19.
Féret, J.-B., K. Berger, F. De Boissieu, and Z. Malenovskỳ. 2021. PROSPECT-PRO for estimating content of nitrogen-containing leaf proteins and other carbon-based constituents. Remote Sensing of Environment 252:112173.
Féret, J.-B., and F. de Boissieu. 2022b. Prosail: PROSAIL leaf and canopy radiative transfer model and inversion routines.
Féret, J.-B., and F. de Boissieu. 2022a. Prospect: PROSPECT leaf radiative transfer model and inversion routines.
Féret, J.-B., C. François, G. P. Asner, A. A. Gitelson, R. E. Martin, L. P. Bidel, S. L. Ustin, G. Le Maire, and S. Jacquemoud. 2008. PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments. Remote Sensing of Environment 112:3030–3043.
Fourty, T., and F. Baret. 1998. On spectral estimates of fresh leaf biochemistry. International Journal of Remote Sensing 19:1283–1297.
Fourty, T., F. Baret, S. Jacquemoud, G. Schmuck, and J. Verdebout. 1996. Leaf optical properties with explicit description of its biochemical composition: Direct and inverse problems. Remote Sensing of Environment 56:104–117.
Fresnel, A. 1821. Note sur le calcul des teintes que la polarisation développe dans leslames cristallisées. Annales de Chimie et de Physique 17:102–111.
Fridman, L. 2019. Deep learning basics. Lecture.
Fu, Y., G. Yang, Z. Li, X. Song, Z. Li, X. Xu, P. Wang, and C. Zhao. 2020. Winter wheat nitrogen status estimation using UAV-based RGB imagery and gaussian processes regression. Remote Sensing 12:3778.
Gao, B.-C., M. J. Montes, C. O. Davis, and A. F. Goetz. 2009. Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean. Remote Sensing of Environment 113:S17–S24.
Gauss, C. F. 1809. Theoria motus corporum coelestium in sectionibus conicis solem ambientium auctore carolo friderico gauss. Sumtibus Frid. Perthes et IH Besser.
Geladi, P., and B. R. Kowalski. 1986. Partial least-squares regression: A tutorial. Analytica chimica acta 185:1–17.
Gewali, U. B., S. T. Monteiro, and E. Saber. 2018. Machine learning based hyperspectral image analysis: A survey. arXiv.
Gitelson, A. A. 2004. Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. Journal of Plant Physiology 161:165–173.
Gitelson, A. A., Y. Gritz, and M. N. Merzlyak. 2003. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology 160:271–282.
Gitelson, A. A., Y. J. Kaufman, and M. N. Merzlyak. 1996. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment 58:289–298.
Goulet, V. 2016. Expint: Exponential integral and incomplete gamma function.
Gramacy, R. B. 2020. Surrogates: Gaussian process modeling, design and  optimization for the applied sciences. Chapman Hall/CRC, Boca Raton, Florida.
Grossman, Y., S. Ustin, S. Jacquemoud, E. Sanderson, G. Schmuck, and J. Verdebout. 1996. Critique of stepwise multiple linear regression for the extraction of leaf biochemistry information from leaf reflectance data. Remote Sensing of Environment 56:182–193.
Guerrero, A., S. De Neve, and A. M. Mouazen. 2021. Current sensor technologies for in situ and on-line measurement of soil nitrogen for variable rate fertilization: A review. Advances in Agronomy 168:1–38.
Guo, Y., Y. Liu, T. Georgiou, and M. S. Lew. 2018. A review of semantic segmentation using deep neural networks. International journal of multimedia information retrieval 7:87–93.
Guyot, G., D. Guyon, and J. Riom. 1989. Factors affecting the spectral response of forest canopies: A review. Geocarto International 4:3–18.
Haboudane, D., J. R. Miller, N. Tremblay, P. J. Zarco-Tejada, and L. Dextraze. 2002. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment 81:416–426.
Hagen, N. A., and M. W. Kudenov. 2013. Review of snapshot spectral imaging technologies. Optical Engineering 52:090901.
Hank, T. B., K. Berger, H. Bach, J. G. Clevers, A. Gitelson, P. Zarco-Tejada, and W. Mauser. 2019. Spaceborne imaging spectroscopy for sustainable agriculture: Contributions and challenges. Surveys in Geophysics 40:515–551.
Hansen, P., and J. Schjoerring. 2003. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sensing of Environment 86:542–553.
Hastie, T., R. Tibshirani, and R. J. Tibshirani. 2017. Extended comparisons of best subset selection, forward stepwise selection, and the lasso. arXiv preprint arXiv:1707.08692.
Hawkesford, M., W. Horst, T. Kichey, H. Lambers, J. Schjoerring, I. S. Møller, and P. White. 2012. Functions of macronutrients. Pages 135–189 Marschner’s mineral nutrition of higher plants. Elsevier.
Herrmann, I., A. Karnieli, D. Bonfil, Y. Cohen, and V. Alchanatis. 2010. SWIR-based spectral indices for assessing nitrogen content in potato fields. International Journal of Remote Sensing 31:5127–5143.
Holthaus, E. 2015. 10 percent of california’s water goes to almond farming. That’s nuts.’. Slate Magazine.
Homolová, L., Z. Malenovskỳ, J. G. Clevers, G. Garcı́a-Santos, and M. E. Schaepman. 2013. Review of optical-based remote sensing for plant trait mapping. Ecological Complexity 15:1–16.
Hosgood, B., S. Jacquemoud, G. Andreoli, J. Verdebout, G. Pedrini, and G. Schmuck. 1995. Leaf optical properties experiment 93 (LOPEX93). Report EUR 16095.
Huete, A. R. 1988. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment 25:295–309.
Huete, A., K. Didan, T. Miura, E. P. Rodriguez, X. Gao, and L. G. Ferreira. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment 83:195–213.
Hunt Jr, E. R., P. C. Doraiswamy, J. E. McMurtrey, C. S. Daughtry, E. M. Perry, and B. Akhmedov. 2013. A visible band index for remote sensing leaf chlorophyll content at the canopy scale. International journal of applied earth observation and geoinformation 21:103–112.
Ihuoma, S. O., and C. A. Madramootoo. 2017. Recent advances in crop water stress detection. Computers and Electronics in Agriculture 141:267–275.
Inoue, Y., E. Sakaiya, Y. Zhu, and W. Takahashi. 2012. Diagnostic mapping of canopy nitrogen content in rice based on hyperspectral measurements. Remote Sensing of Environment 126:210–221.
Ioffe, S., and C. Szegedy. 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. Pages 448–456 International conference on machine learning. pmlr.
ISO. 2022. Thermal insulation — heat transfer by radiation — vocabulary. Standard, International Organization for Standardization, Geneva, CH.
Jackson, R. D., S. Idso, R. Reginato, and P. Pinter Jr. 1981. Canopy temperature as a crop water stress indicator. Water resources research 17:1133–1138.
Jacquemoud, S. 1992. Utilisation de la haute resolution spectrale pour l’etude des couverts vegetaux: Developpement d’un modele de reflectance spectrale. PhD thesis, Université Paris Diderot-Paris 7.
Jacquemoud, S., C. Bacour, H. Poilve, and J.-P. Frangi. 2000. Comparison of four radiative transfer models to simulate plant canopies reflectance: Direct and inverse mode. Remote Sensing of Environment 74:471–481.
Jacquemoud, S., and F. Baret. 1990. PROSPECT: A model of leaf optical properties spectra. Remote Sensing of Environment 34:75–91.
Jacquemoud, S., S. Ustin, J. Verdebout, G. Schmuck, G. Andreoli, and B. Hosgood. 1996. Estimating leaf biochemistry using the PROSPECT leaf optical properties model. Remote Sensing of Environment 56:194–202.
Jacquemoud, S., W. Verhoef, F. Baret, C. Bacour, P. Zarco-Tejada, G. Asner, C. François, and S. Ustin. 2009. PROSPECT + SAIL models: A review of use for vegetation characterization. Remote Sensing of Environment 113:S56–S66.
Jafarbiglu, H., and A. Pourreza. 2022. A comprehensive review of remote sensing platforms, sensors, and applications in nut crops. Computers and Electronics in Agriculture 197:106844.
Jafarbiglu, H., and A. Pourreza. 2023. Impact of sun-view geometry on canopy spectral reflectance variability. ISPRS Journal of Photogrammetry and Remote Sensing 196:270–286.
James, G., D. Witten, T. Hastie, and R. Tibshirani. 2013. An introduction to statistical learning. Springer.
Jianbo, Q. 2022. LESS user’s manual. 2.0 edition.
Jin, D., J. Qi, H. Huang, and L. Li. 2021. Combining 3D radiative transfer model and convolutional neural network to accurately estimate forest canopy cover from very high-resolution satellite images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 14:10953–10963.
Jin, X., Z. Li, H. Feng, X. Xu, and G. Yang. 2014. Newly combined spectral indices to improve estimation of total leaf chlorophyll content in cotton. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 7:4589–4600.
Jin, Y., B. Chen, B. D. Lampinen, and P. H. Brown. 2020. Advancing agricultural production with machine learning analytics: Yield determinants for california’s almond orchards. Frontiers in Plant Science 11:290.
Johnson, M. D., W. W. Hsieh, A. J. Cannon, A. Davidson, and F. Bédard. 2016. Crop yield forecasting on the canadian prairies by remotely sensed vegetation indices and machine learning methods. Agricultural and forest meteorology 218:74–84.
Jordan, C. F. 1969. Derivation of leaf-area index from quality of light on the forest floor. Ecology 50:663–666.
Jordan, M. I., and T. M. Mitchell. 2015. Machine learning: Trends, perspectives, and prospects. Science 349:255–260.
Jumper, J., R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool, R. Bates, A. Žı́dek, A. Potapenko, and others. 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589.
Justes, E., B. Mary, J.-M. Meynard, J.-M. Machet, and L. Thelier-Huché. 1994. Determination of a critical nitrogen dilution curve for winter wheat crops. Annals of botany 74:397–407.
Kapoor, A., and T. Viraraghavan. 1997. Nitrate removal from drinking water. Journal of environmental engineering 123:371–380.
Kaufman, Y. J., and D. Tanre. 1992. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Transactions on Geoscience and Remote Sensing 30:261–270.
Khalsa, S. D. S., and P. H. Brown. 2018. Understanding nitrogen cycling in an irrigated deciduous permanent crop. Pages 207–212 XXX international horticultural congress IHC2018: International symposium on water and nutrient relations and management of 1253.
Kimes, D., Y. Knyazikhin, J. Privette, A. Abuelgasim, and F. Gao. 2000. Inversion methods for physically-based models. Remote Sensing Reviews 18:381–439.
Kokaly, R. F., G. P. Asner, S. V. Ollinger, M. E. Martin, and C. A. Wessman. 2009. Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies. Remote Sensing of Environment 113:S78–S91.
Kuhn, M. 2022. Caret: Classification and regression training.
Kuhn, M., and R. Quinlan. 2023. Cubist: Rule- and instance-based regression modeling.
Lambert, J. H. 1760. Photometria sive de mensura et gradibus luminis, colorum et umbrae. Sumptibus vidvae E. Klett, typis CP Detleffsen.
Legendre, A. M. 1806. Nouvelles méthodes pour la détermination des orbites des comètes; par AM legendre... chez Firmin Didot, libraire pour lew mathematiques, la marine, l .
Li, Y., N. He, J. Hou, L. Xu, C. Liu, J. Zhang, Q. Wang, X. Zhang, and X. Wu. 2018. Factors influencing leaf chlorophyll content in natural forests at the biome scale. Frontiers in Ecology and Evolution 6:64.
Liaw, A., and M. Wiener. 2002. Classification and regression by randomForest. R News 2:18–22.
Liland, K. H., B.-H. Mevik, and R. Wehrens. 2022. Pls: Partial least squares and principal component regression.
Lin, D., M. Kettunen, B. Bitterli, J. Pantaleoni, C. Yuksel, and C. Wyman. 2022. Generalized resampled importance sampling: Foundations of ReSTIR. ACM Transactions on Graphics (TOG) 41:1–23.
Liu, C., X. Zhang, T. T. Nguyen, J. Liu, T. Wu, E. Lee, and X. M. Tu. 2022. Partial least squares regression and principal component analysis: Similarity and differences between two popular variable reduction approaches. General Psychiatry 35.
Malenovskỳ, Z., L. Homolová, R. Zurita-Milla, P. Lukeš, V. Kaplan, J. Hanuš, J.-P. Gastellu-Etchegorry, and M. E. Schaepman. 2013. Retrieval of spruce leaf chlorophyll content from airborne image data using continuum removal and radiative transfer. Remote Sensing of Environment 131:85–102.
Markov, A. A. 1912. Wahrscheinlichkeitsrechnung. BG Teubner.
McCulloch, W. S., and W. Pitts. 1943. A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics 5:115–133.
Mehmood, T., and B. Ahmed. 2016. The diversity in the applications of partial least squares: An overview. Journal of Chemometrics 30:4–17.
Micke, W. 1996. Almond production manual. Regents of the University of California.
Moghimi, A., A. Pourreza, G. Zuniga-Ramirez, L. E. Williams, and M. W. Fidelibus. 2020. A novel machine learning approach to estimate grapevine leaf nitrogen concentration using aerial multispectral imagery. Remote Sensing 12:3515.
Mount, J., and E. Hanak. 2016. Water use in california. Public Policy Institute of California, San Francisco, California 2.
Muñoz-Huerta, R. F., R. G. Guevara-Gonzalez, L. M. Contreras-Medina, I. Torres-Pacheco, J. Prado-Olivarez, and R. V. Ocampo-Velazquez. 2013. A review of methods for sensing the nitrogen status in plants: Advantages, disadvantages and recent advances. sensors 13:10823–10843.
National Renewable Energy Laboratory. 2022. 2000 ASTM standard extraterrestrial spectrum reference e-490-00. Webpage.
Nawi, N. M., W. H. Atomi, and M. Z. Rehman. 2013. The effect of data pre-processing on optimized training of artificial neural networks. Procedia Technology 11:32–39.
Noda, T. R. A. M. C. A. J. K. A. G. L. A. Y. N. A. M. I. A. H. 2023. Stockfish. https://github.com/official-stockfish/Stockfish; GitHub.
Ohyama, T. 2010. Nitrogen as a major essential element of plants. Nitrogen assimilation in plants 37:2–17.
Omidi, R., A. Moghimi, A. Pourreza, M. El-Hadedy, and A. S. Eddin. 2020. Ensemble hyperspectral band selection for detecting nitrogen status in grape leaves. IEEE.
OpenAI. 2023. GPT-4 technical report. OpenAI.
Padilla, F. M., R. de Souza, M. T. Peña-Fleitas, M. Gallardo, C. Gimenez, and R. B. Thompson. 2018. Different responses of various chlorophyll meters to increasing nitrogen supply in sweet pepper. Frontiers in plant science 9:1752.
Pancorbo, J., C. Camino, M. Alonso-Ayuso, M. Raya-Sereno, I. Gonzalez-Fernandez, J. L. Gabriel, P. J. Zarco-Tejada, and M. Quemada. 2021. Simultaneous assessment of nitrogen and water status in winter wheat using hyperspectral and thermal sensors. European Journal of Agronomy 127:126287.
Pathak, T. B., M. L. Maskey, J. A. Dahlberg, F. Kearns, K. M. Bali, and D. Zaccaria. 2018. Climate change trends and impacts on california agriculture: A detailed review. Agronomy 8:25.
Peddie, J. 2019. Ray tracing: A tool for all. Springer.
Peñuelas, J., J. Gamon, A. Fredeen, J. Merino, and C. Field. 1994. Reflectance indices associated with physiological changes in nitrogen-and water-limited sunflower leaves. Remote Sensing of Environment 48:135–146.
Perich, G., P. Meyer, A. Wieser, and F. Liebisch. 2021. Proximal and drone based hyperspectral sensing for crop nitrogen status detection in historic field trials. Pages 1–5 2021 11th workshop on hyperspectral imaging and signal processing: Evolution in remote sensing (WHISPERS). IEEE.
Pierce, F. J., and P. Nowak. 1999. Aspects of precision agriculture. Advances in Agronomy 67:1–85.
Plackett, R. L. 1949. A historical note on the method of least squares. Biometrika 36:458–460.
QGIS Development Team. 2022. QGIS geographic information system. QGIS Association.
Qi, J., A. Chehbouni, A. R. Huete, Y. H. Kerr, and S. Sorooshian. 1994. A modified soil adjusted vegetation index. Remote Sensing of Environment 48:119–126.
Qi, J., J. Jiang, K. Zhou, D. Xie, and H. Huang. 2023. Fast and accurate simulation of canopy reflectance under wavelength-dependent optical properties using a semi-empirical 3D radiative transfer model. Journal of Remote Sensing 3:0017.
Qi, J., D. Xie, D. Guo, and G. Yan. 2017. A large-scale emulation system for realistic three-dimensional (3-d) forest simulation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 10:4834–4843.
Qi, J., D. Xie, J. Jiang, and H. Huang. 2022. 3D radiative transfer modeling of structurally complex forest canopies through a lightweight boundary-based description of leaf clusters. Remote Sensing of Environment 283:113301.
Qi, J., D. Xie, T. Yin, G. Yan, J.-P. Gastellu-Etchegorry, L. Li, W. Zhang, X. Mu, and L. K. Norford. 2019. LESS: LargE-scale remote sensing data and image simulation framework over heterogeneous 3D scenes. Remote Sensing of Environment 221:695–706.
R Core Team. 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Raun, W. R., G. Johnson, and R. Westerman. 1999. Fertilizer nitrogen recovery in long-term continuous winter wheat. Soil Science Society of America Journal 63:645–650.
Ravikanth, L., D. S. Jayas, N. D. White, P. G. Fields, and D.-W. Sun. 2017. Extraction of spectral information from hyperspectral data and application of hyperspectral imaging for food and agricultural products. Food and bioprocess technology 10:1–33.
Ren-hua, Z., N. Rao, and K. Liao. 1996. Approach for a vegetation index resistant to atmospheric effect. Journal of Integrative Plant Biology 38.
Richardson, A. J., and C. Wiegand. 1977. Distinguishing vegetation from soil background information. Photogrammetric engineering and remote sensing 43:1541–1552.
Rohde, R. A. 2013. Spectrum of solar radiation. Webpage.
Rombach, R., A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. 2021. High-resolution image synthesis with latent diffusion models.
Rosenblatt, F. 1958. The perceptron: A probabilistic model for information storage and organization in the brain. Psychological review 65:386.
Rosipal, R., and N. Krämer. 2006. Overview and recent advances in partial least squares. Pages 34–51 Subspace, latent structure and feature selection: Statistical and optimization perspectives workshop, SLSFS 2005, bohinj, slovenia, february 23-25, 2005, revised selected papers. Springer.
Rouse Jr, J. W., R. H. Haas, J. Schell, and D. Deering. 1973. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. Texas A&M University Remote Sensing Center.
Rudin, C. 2019. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature machine intelligence 1:206–215.
Sáez-Plaza, P., M. J. Navas, S. Wybraniec, T. Michałowski, and A. G. Asuero. 2013. An overview of the kjeldahl method of nitrogen determination. Part II. Sample preparation, working scale, instrumental finish, and quality control. Critical Reviews in Analytical Chemistry 43:224–272.
Samuel, A. L. 1959. Machine learning. The Technology Review 62:42–45.
Schirrmann, M., A. Giebel, F. Gleiniger, M. Pflanz, J. Lentschke, and K.-H. Dammer. 2016. Monitoring agronomic parameters of winter wheat crops with low-cost UAV imagery. Remote Sensing 8:706.
Schowengerdt, R. A. 2006. Remote sensing: Models and methods for image processing. Elsevier.
Selan, J. 2005. Using lookup tables to accelerate color transformations. GPU Gems 2:381–392.
Serrano, L., J. Penuelas, and S. L. Ustin. 2002. Remote sensing of nitrogen and lignin in mediterranean vegetation from AVIRIS data: Decomposing biochemical from structural signals. Remote sensing of Environment 81:355–364.
Shiklomanov, A. N., M. C. Dietze, I. Fer, T. Viskari, and S. P. Serbin. 2021. Cutting out the middleman: Calibrating and validating a dynamic vegetation model (ED2-PROSPECT5) using remotely sensed surface reflectance. Geoscientific Model Development 14:2603–2633.
Silver, D., J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, and others. 2017. Mastering the game of go without human knowledge. Nature 550:354–359.
Sishodia, R. P., R. L. Ray, and S. K. Singh. 2020. Applications of remote sensing in precision agriculture: A review. Remote Sensing 12:3136.
Smart, D., D. Schellenberg, S. Saa Silva, S. Muhammad, B. Sanden, and P. Brown. 2014. Nitrogen use efficiency of california almond orchards using advanced farming practices. Page 487 EGU general assembly conference abstracts.
Sonobe, R., Y. Yamaya, H. Tani, X. Wang, N. Kobayashi, and K. Mochizuki. 2018. Crop classification from sentinel-2-derived vegetation indices using ensemble learning. Journal of Applied Remote Sensing 12:026019–026019.
Spafford, L., G. Le Maire, A. MacDougall, F. De Boissieu, and J.-B. Feret. 2021. Spectral subdomains and prior estimation of leaf structure improves PROSPECT inversion on reflectance or transmittance alone. Remote Sensing of Environment 252:112176.
Stark, C. H., and K. G. Richards. 2008. The continuing challenge of agricultural nitrogen loss to the environment in the context of global change and advancing research. Dynamic Soil, Dynamic Plant 2:1–12.
Stern, F. 1964. Transmission of isotropic radiation across an interface between two dielectrics. Applied Optics 3:111–113.
Stickler, G., and L. Kyle. 2016. Educational brief – solar radiation and the earth system. National Aeronautics and Space Administration.
Stone, M. 1974. Cross-validatory choice and assessment of statistical predictions. Journal of the royal statistical society: Series B (Methodological) 36:111–133.
Takayama, T., and A. Iwasaki. 2016. Optimal wavelength selection on hyperspectral data with fused lasso for biomass estimation of tropical rainforests. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences 3.
Thenkabail, P. S., I. Mariotto, M. K. Gumma, E. M. Middleton, D. R. Landis, and K. F. Huemmrich. 2013. Selection of hyperspectral narrowbands (HNBs) and composition of hyperspectral twoband vegetation indices (HVIs) for biophysical characterization and discrimination of crop types using field reflectance and hyperion/EO-1 data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 6:427–439.
Thomas, J. R., and G. F. Oerther. 1972. Estimating nitrogen content of sweet pepper leaves by reflectance measurements. Agronomy journal 64:11–13.
Tian, Y., X. Yao, J. Yang, W. Cao, D. Hannaway, and Y. Zhu. 2011. Assessing newly developed and published vegetation indices for estimating rice leaf nitrogen concentration with ground-and space-based hyperspectral reflectance. Field Crops Research 120:299–310.
Tibshirani, R. 1996. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58:267–288.
USDA. 2021. California almond acreage report. United States Department of Agriculture, Pacific Region, P.O. Box 1258, Sacramento, CA 95812.
Van den Berg, H. 2018. Occam’s razor: From ockham’s via moderna to modern data science. Science progress 101:261–272.
Verger, A., F. Baret, and F. Camacho. 2011. Optimal modalities for radiative transfer-neural network estimation of canopy biophysical characteristics: Evaluation over an agricultural area with CHRIS/PROBA observations. Remote Sensing of Environment 115:415–426.
Verhoef, W. 1984. Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model. Remote Sensing of Environment 16:125–141.
Verhoef, W. 1985. Earth observation modeling based on layer scattering matrices. Remote Sensing of Environment 17:165–178.
Verhoef, W., L. Jia, Q. Xiao, and Z. Su. 2007. Unified optical-thermal four-stream radiative transfer theory for homogeneous vegetation canopies. IEEE Transactions on geoscience and remote sensing 45:1808–1822.
Verrelst, J., S. Dethier, J. P. Rivera, J. Munoz-Mari, G. Camps-Valls, and J. Moreno. 2016. Active learning methods for efficient hybrid biophysical variable retrieval. IEEE Geoscience and Remote Sensing Letters 13:1012–1016.
Verrelst, J., Z. Malenovskỳ, C. Van der Tol, G. Camps-Valls, J.-P. Gastellu-Etchegorry, P. Lewis, P. North, and J. Moreno. 2019. Quantifying vegetation biophysical variables from imaging spectroscopy data: A review on retrieval methods. Surveys in Geophysics 40:589–629.
Verrelst, J., and J. Rivera. 2017. A global sensitivity analysis toolbox to quantify drivers of vegetation radiative transfer models. Pages 319–339 Sensitivity analysis in earth observation modelling. Elsevier.
Verrelst, J., J. P. Rivera, J. Gómez-Dans, G. Camps-Valls, and J. Moreno. 2015. Replacing radiative transfer models by surrogate approximations through machine learning. Pages 633–636 2015 IEEE international geoscience and remote sensing symposium (IGARSS). IEEE.
Viers, J. H., D. Liptzin, T. S. Rosenstock, V. B. Jensen, A. D. Hollander, A. McNally, A. M. King, G. Kourakos, E. M. Lopez, N. D. L. Mora, A. FryjoffHung, H. C. Kristin N. Dzurella, S. Laybourne, C. McKenney, J. Darby, J. F. Quinn, and T. Harter. 2012. Assessing nitrate in california’s drinking water with a focus on tulare lake basin and salinas valley groundwater. Center for Watershed Sciences, University of California, Davis.
VineView. 2022. Water index. Webpage.
Vinyals, O., I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev, and others. 2019. Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature 575:350–354.
Vitousek, P. M., J. D. Aber, R. W. Howarth, G. E. Likens, P. A. Matson, D. W. Schindler, W. H. Schlesinger, and D. G. Tilman. 1997. Human alteration of the global nitrogen cycle: Sources and consequences. Ecological applications 7:737–750.
Wade, T., S. Sommer, and others. 2006. A to z GIS, an illustrated dictionary of geographic information systems. Esri Press.
Walter, A., R. Finger, R. Huber, and N. Buchmann. 2017. Smart farming is key to developing sustainable agriculture. Proceedings of the National Academy of Sciences 114:6148–6150.
Wang, J., C. Shen, N. Liu, X. Jin, X. Fan, C. Dong, and Y. Xu. 2017. Non-destructive evaluation of the leaf nitrogen concentration by in-field visible/near-infrared spectroscopy in pear orchards. Sensors 17:538.
Webb, J., P. Sørensen, G. Velthof, B. Amon, M. Pinto, L. Rodhe, E. Salomon, N. Hutchings, P. Burczyk, and J. Reid. 2013. An assessment of the variation of manure nitrogen efficiency throughout europe and an appraisal of means to increase manure-n efficiency. Advances in Agronomy 119:371–442.
Weber, A., M. Benecke, J. Wendler, A. Sieck, D. Hübner, H. Figgemeier, and R. Breiter. 2016. Extended SWIR imaging sensors for hyperspectral imaging applications. Pages 42–56 Image sensing technologies: Materials, devices, systems, and applications III. SPIE.
Wheeler, R. 2011. Diagram of the internal structure of a leaf. Webpage.
WIFSS. 2016. Almonds. Western Institute for Food Safety and Security, 1477 Drew Ave, Davis, CA 95618.
Willett, J. B., and J. D. Singer. 1988. Another cautionary note about r2: Its use in weighted least-squares regression analysis. The American Statistician 42:236–238.
Wold, S., A. Ruhe, H. Wold, and W. Dunn Iii. 1984. The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses. SIAM Journal on Scientific and Statistical Computing 5:735–743.
Wolfert, S., L. Ge, C. Verdouw, and M.-J. Bogaardt. 2017. Big data in smart farming–a review. Agricultural Systems 153:69–80.
Wright, I. J., P. B. Reich, M. Westoby, D. D. Ackerly, Z. Baruch, F. Bongers, J. Cavender-Bares, T. Chapin, J. H. Cornelissen, M. Diemer, and others. 2004. The worldwide leaf economics spectrum. Nature 428:821–827.
Wright, S. 1921. Correlation and causation. Journal of Agricultural Research 20:557–585.
Wyman, C., and A. Panteleev. 2021. Rearchitecting spatiotemporal resampling for production. Pages 23–41 Proceedings of the conference on high-performance graphics.
Xue, J., and B. Su. 2017. Significant remote sensing vegetation indices: A review of developments and applications. Journal of sensors 2017:1–17.
Yan, X., and X. Su. 2009. Linear regression analysis: Theory and computing. world scientific.
Yang, P., C. van der Tol, T. Yin, and W. Verhoef. 2020. The SPART model: A soil-plant-atmosphere radiative transfer model for satellite measurements in the solar spectrum. Remote Sensing of Environment 247:111870.
Yang, X., X. Wu, H. Hao, and Z. He. 2008. Mechanisms and assessment of water eutrophication. Journal of zhejiang university Science B 9:197–209.
Yokoya, N., and A. Iwasaki. 2013. Hyperspectral and multispectral data fusion mission on hyperspectral imager suite (HISUI). Pages 4086–4089 2013 IEEE international geoscience and remote sensing symposium-IGARSS. IEEE.
Zha, H., Y. Miao, T. Wang, Y. Li, J. Zhang, W. Sun, Z. Feng, and K. Kusnierek. 2020. Improving unmanned aerial vehicle remote sensing-based rice nitrogen nutrition index prediction with machine learning. Remote Sensing 12:215.
Zhang, N., M. Wang, and N. Wang. 2002. Precision agriculture—a worldwide overview. Computers and electronics in agriculture 36:113–132.
Zhang, Q., X. Xiao, B. Braswell, E. Linder, F. Baret, and B. Moore III. 2005. Estimating light absorption by chlorophyll, leaf and canopy in a deciduous broadleaf forest using MODIS data and a radiative transfer model. Remote Sensing of Environment 99:357–371.
Zhang, Z., Y. Jin, B. Chen, and P. Brown. 2019. California almond yield prediction at the orchard level with a machine learning approach. Frontiers in plant science 10:809.
Zheng, G., and M. Moskal. 2009. Retrieving leaf area index (LAI) using remote sensing: Theories, methods and sensors. Sensors 9:2719–2745.
Zheng, H., T. Cheng, D. Li, X. Zhou, X. Yao, Y. Tian, W. Cao, and Y. Zhu. 2018. Evaluation of RGB, color-infrared and multispectral images acquired from unmanned aerial systems for the estimation of nitrogen accumulation in rice. Remote Sensing 10:824.
Zhu, X. X., D. Tuia, L. Mou, G.-S. Xia, L. Zhang, F. Xu, and F. Fraundorfer. 2017. Deep learning in remote sensing: A comprehensive review and list of resources. IEEE Geoscience and Remote Sensing Magazine 5:8–36.
Zou, H., and T. Hastie. 2005. Regularization and variable selection via the elastic net. Journal of the royal statistical society: series B (statistical methodology) 67:301–320.