Appendix
This appendix features a list of abbreviations and symbols used throughout this thesis (Table 1) as well as the numerical values of the performance results of the models tested (Table 2, 3, and 4).
Abbreviation | Meaning |
---|---|
\(\lambda\) | Wavelength |
\(\boldsymbol \rho\) | Reflectance vector |
\(\rho_\lambda\) | Spectral reflectance at wavelength \(\lambda\). |
\(\boldsymbol \tau\) | Transmittance vector |
\(\tau_\lambda\) | Spectral transmittance at wavelength \(\lambda\). |
\(\text{N}_{\%}\) | Mass-based nitrogen, i.e., (foliar) nitrogen concentration. |
\(\text{N}_{\text {area}}\) | Area-based nitrogen. |
LMA | Leaf mass per area. |
LAI | Leaf area index. |
\(\mathbf X\) | Design matrix, matrix of input variables to a model. |
\(\mathbf x_{(i)}\) | The \(i\)th row of the design matrix \(\mathbf X\), i.e., one single observation. |
\(\mathbf y\) | Response vector, vector of output variables from a model. |
\(\mathbf {\hat y}\) | Estimated values of \(\mathbf y\). |
\({\bar y}\) | Arithmetic mean of all values in \(\mathbf y\). |
\(\mathcal D\) | The entire data set of \(\mathbf X\) and \(\mathbf y\). |
\(n\) | Number of observations in \(\mathcal D\). |
\(d\) | Number of predictor variables, i.e., number of columns in \(\mathbf X\). |
\(p\) | Number of parameters in a model. |
\(\boldsymbol \Sigma\) | Covariance matrix of \(\mathbf X\). |
\(\boldsymbol \beta\) | Coefficient vector (vector of parameters of a linear model). |
\(\boldsymbol \theta\) | Parameter vector (vector of parameters of any model). |
\(\mu_\mathbf{x}\) | Arithmetic mean of \(\mathbf{x}\). |
\(\sigma_\mathbf{x}\) | Standard deviation of \(\mathbf{x}\). |
\(J\) | Cost function. |
Prospect | Leaf-level radiative transfer model. |
Less | Canopy-level radiative transfer model. |
Method | R2 | RMSE [g mm-2] | CLD |
---|---|---|---|
NDVI | -0.016 ± 0.024 | 0.316 ± 0.0037 | a |
NDRE | 0.123 ± 0.007 | 0.293 ± 0.0011 | b |
EVI | 0.115 ± 0.006 | 0.295 ± 0.001 | c |
GCI | -0.055 ± 0.015 | 0.322 ± 0.0023 | d |
GNDVI | -0.048 ± 0.013 | 0.321 ± 0.002 | d |
MCARI | 0.01 ± 0.014 | 0.312 ± 0.0021 | e |
RECI | 0.128 ± 0.004 | 0.292 ± 8e-04 | f |
TCARI | -0.016 ± 0.005 | 0.316 ± 7e-04 | a |
WDRVI | 0.011 ± 0.016 | 0.312 ± 0.0025 | e |
R434 | 0.255 ± 0.008 | 0.27 ± 0.0014 | g |
Combined vegetation indices | 0.464 ± 0.019 | 0.229 ± 0.004 | h |
Recursive feature selection | 0.544 ± 0.01 | 0.211 ± 0.0024 | i |
Square feature selection | 0.61 ± 0.007 | 0.195 ± 0.0019 | j |
Lasso | 0.542 ± 0.04 | 0.212 ± 0.0089 | i |
Ridge | 0.496 ± 0.007 | 0.222 ± 0.0015 | k |
Elastic-net | 0.537 ± 0.049 | 0.213 ± 0.0106 | i |
Principal components | 0.614 ± 0.021 | 0.195 ± 0.0052 | jl |
Partial least squares | 0.626 ± 0.02 | 0.192 ± 0.0052 | l |
Random forest | 0.492 ± 0.01 | 0.223 ± 0.0021 | k |
Extreme gradient boosting | 0.548 ± 0.03 | 0.21 ± 0.007 | i |
Cubist | 0.276 ± 0.046 | 0.266 ± 0.0083 | g |
Prospect-Pro | 0.684 ± 0.004 | 0.176 ± 0.0012 | m |
Method | R2 | RMSE [%] | CLD |
---|---|---|---|
NDVI | 0.184 ± 0.005 | 0.22 ± 7e-04 | a |
NDRE | 0.177 ± 0.005 | 0.221 ± 7e-04 | bc |
EVI | 0.177 ± 0.006 | 0.221 ± 7e-04 | bc |
GCI | 0.089 ± 0.006 | 0.233 ± 8e-04 | d |
GNDVI | 0.093 ± 0.007 | 0.232 ± 8e-04 | d |
MCARI | 0.151 ± 0.005 | 0.225 ± 7e-04 | e |
RECI | 0.174 ± 0.007 | 0.222 ± 9e-04 | b |
TCARI | 0.148 ± 0.006 | 0.225 ± 8e-04 | e |
WDRVI | 0.177 ± 0.005 | 0.221 ± 6e-04 | bc |
R434 | 0.065 ± 0.007 | 0.236 ± 9e-04 | f |
Combined vegetation indices | 0.14 ± 0.02 | 0.226 ± 0.0026 | e |
Recursive feature selection | 0.235 ± 0.006 | 0.213 ± 9e-04 | g |
Square feature selection | 0.22 ± 0.015 | 0.215 ± 0.0021 | h |
Lasso | 0.407 ± 0.012 | 0.188 ± 0.002 | ij |
Ridge | 0.182 ± 0.009 | 0.221 ± 0.0012 | ac |
Elastic-net | 0.407 ± 0.01 | 0.188 ± 0.0016 | i |
Principal components | 0.417 ± 0.017 | 0.186 ± 0.0028 | j |
Partial least squares | 0.493 ± 0.022 | 0.174 ± 0.0037 | k |
Random forest | 0.27 ± 0.02 | 0.208 ± 0.0028 | l |
Extreme gradient boosting | 0.288 ± 0.05 | 0.206 ± 0.0072 | l |
Cubist | 0.384 ± 0.034 | 0.191 ± 0.0053 | i |
Prospect-Pro | 0.453 ± 0.005 | 0.18 ± 8e-04 | m |
Method | R2 | RMSE [%] | CLD |
---|---|---|---|
NDVI | -0.026 ± 0.027 | 0.257 ± 0.0034 | a |
NDRE | -0.003 ± 0.026 | 0.254 ± 0.0033 | bc |
EVI | -0.082 ± 0.011 | 0.264 ± 0.0013 | d |
GCI | -0.01 ± 0.026 | 0.255 ± 0.0032 | abc |
GNDVI | -0.012 ± 0.027 | 0.255 ± 0.0034 | abc |
MCARI | -0.001 ± 0.019 | 0.254 ± 0.0024 | b |
RECI | -0.007 ± 0.023 | 0.254 ± 0.0029 | abc |
TCARI | 0.068 ± 0.006 | 0.245 ± 8e-04 | e |
WDRVI | -0.021 ± 0.023 | 0.256 ± 0.0029 | ac |
R434 | 0.198 ± 0.007 | 0.227 ± 9e-04 | f |
Combined vegetation indices | 0.237 ± 0.011 | 0.221 ± 0.0015 | g |
Recursive feature selection | 0.142 ± 0.022 | 0.235 ± 0.003 | h |
Square feature selection | 0.256 ± 0.014 | 0.218 ± 0.0021 | i |
Lasso | 0.249 ± 0.012 | 0.22 ± 0.0018 | i |
Ridge | 0.206 ± 0.008 | 0.226 ± 0.0012 | j |
Elastic-net | 0.25 ± 0.012 | 0.219 ± 0.0017 | i |
Principal components | 0.236 ± 0.013 | 0.221 ± 0.0019 | g |
Partial least squares | 0.228 ± 0.013 | 0.223 ± 0.0019 | g |
Random forest | 0.102 ± 0.032 | 0.24 ± 0.0042 | k |
Extreme gradient boosting | 0.127 ± 0.018 | 0.237 ± 0.0024 | hl |
Cubist | 0.175 ± 0.013 | 0.23 ± 0.0018 | m |
Less | 0.116 ± 0.011 | 0.237 ± 0.0015 | kl |
Less + interpolation | 0.235 ± 0.009 | 0.22 ± 0.0013 | g |