Appendix
This appendix features a list of abbreviations and symbols used throughout this thesis (Table 1) as well as the numerical values of the performance results of the models tested (Table 2, 3, and 4).
| Abbreviation | Meaning |
|---|---|
| \(\lambda\) | Wavelength |
| \(\boldsymbol \rho\) | Reflectance vector |
| \(\rho_\lambda\) | Spectral reflectance at wavelength \(\lambda\). |
| \(\boldsymbol \tau\) | Transmittance vector |
| \(\tau_\lambda\) | Spectral transmittance at wavelength \(\lambda\). |
| \(\text{N}_{\%}\) | Mass-based nitrogen, i.e., (foliar) nitrogen concentration. |
| \(\text{N}_{\text {area}}\) | Area-based nitrogen. |
| LMA | Leaf mass per area. |
| LAI | Leaf area index. |
| \(\mathbf X\) | Design matrix, matrix of input variables to a model. |
| \(\mathbf x_{(i)}\) | The \(i\)th row of the design matrix \(\mathbf X\), i.e., one single observation. |
| \(\mathbf y\) | Response vector, vector of output variables from a model. |
| \(\mathbf {\hat y}\) | Estimated values of \(\mathbf y\). |
| \({\bar y}\) | Arithmetic mean of all values in \(\mathbf y\). |
| \(\mathcal D\) | The entire data set of \(\mathbf X\) and \(\mathbf y\). |
| \(n\) | Number of observations in \(\mathcal D\). |
| \(d\) | Number of predictor variables, i.e., number of columns in \(\mathbf X\). |
| \(p\) | Number of parameters in a model. |
| \(\boldsymbol \Sigma\) | Covariance matrix of \(\mathbf X\). |
| \(\boldsymbol \beta\) | Coefficient vector (vector of parameters of a linear model). |
| \(\boldsymbol \theta\) | Parameter vector (vector of parameters of any model). |
| \(\mu_\mathbf{x}\) | Arithmetic mean of \(\mathbf{x}\). |
| \(\sigma_\mathbf{x}\) | Standard deviation of \(\mathbf{x}\). |
| \(J\) | Cost function. |
| Prospect | Leaf-level radiative transfer model. |
| Less | Canopy-level radiative transfer model. |
| Method | R2 | RMSE [g mm-2] | CLD |
|---|---|---|---|
| NDVI | -0.016 ± 0.024 | 0.316 ± 0.0037 | a |
| NDRE | 0.123 ± 0.007 | 0.293 ± 0.0011 | b |
| EVI | 0.115 ± 0.006 | 0.295 ± 0.001 | c |
| GCI | -0.055 ± 0.015 | 0.322 ± 0.0023 | d |
| GNDVI | -0.048 ± 0.013 | 0.321 ± 0.002 | d |
| MCARI | 0.01 ± 0.014 | 0.312 ± 0.0021 | e |
| RECI | 0.128 ± 0.004 | 0.292 ± 8e-04 | f |
| TCARI | -0.016 ± 0.005 | 0.316 ± 7e-04 | a |
| WDRVI | 0.011 ± 0.016 | 0.312 ± 0.0025 | e |
| R434 | 0.255 ± 0.008 | 0.27 ± 0.0014 | g |
| Combined vegetation indices | 0.464 ± 0.019 | 0.229 ± 0.004 | h |
| Recursive feature selection | 0.544 ± 0.01 | 0.211 ± 0.0024 | i |
| Square feature selection | 0.61 ± 0.007 | 0.195 ± 0.0019 | j |
| Lasso | 0.542 ± 0.04 | 0.212 ± 0.0089 | i |
| Ridge | 0.496 ± 0.007 | 0.222 ± 0.0015 | k |
| Elastic-net | 0.537 ± 0.049 | 0.213 ± 0.0106 | i |
| Principal components | 0.614 ± 0.021 | 0.195 ± 0.0052 | jl |
| Partial least squares | 0.626 ± 0.02 | 0.192 ± 0.0052 | l |
| Random forest | 0.492 ± 0.01 | 0.223 ± 0.0021 | k |
| Extreme gradient boosting | 0.548 ± 0.03 | 0.21 ± 0.007 | i |
| Cubist | 0.276 ± 0.046 | 0.266 ± 0.0083 | g |
| Prospect-Pro | 0.684 ± 0.004 | 0.176 ± 0.0012 | m |
| Method | R2 | RMSE [%] | CLD |
|---|---|---|---|
| NDVI | 0.184 ± 0.005 | 0.22 ± 7e-04 | a |
| NDRE | 0.177 ± 0.005 | 0.221 ± 7e-04 | bc |
| EVI | 0.177 ± 0.006 | 0.221 ± 7e-04 | bc |
| GCI | 0.089 ± 0.006 | 0.233 ± 8e-04 | d |
| GNDVI | 0.093 ± 0.007 | 0.232 ± 8e-04 | d |
| MCARI | 0.151 ± 0.005 | 0.225 ± 7e-04 | e |
| RECI | 0.174 ± 0.007 | 0.222 ± 9e-04 | b |
| TCARI | 0.148 ± 0.006 | 0.225 ± 8e-04 | e |
| WDRVI | 0.177 ± 0.005 | 0.221 ± 6e-04 | bc |
| R434 | 0.065 ± 0.007 | 0.236 ± 9e-04 | f |
| Combined vegetation indices | 0.14 ± 0.02 | 0.226 ± 0.0026 | e |
| Recursive feature selection | 0.235 ± 0.006 | 0.213 ± 9e-04 | g |
| Square feature selection | 0.22 ± 0.015 | 0.215 ± 0.0021 | h |
| Lasso | 0.407 ± 0.012 | 0.188 ± 0.002 | ij |
| Ridge | 0.182 ± 0.009 | 0.221 ± 0.0012 | ac |
| Elastic-net | 0.407 ± 0.01 | 0.188 ± 0.0016 | i |
| Principal components | 0.417 ± 0.017 | 0.186 ± 0.0028 | j |
| Partial least squares | 0.493 ± 0.022 | 0.174 ± 0.0037 | k |
| Random forest | 0.27 ± 0.02 | 0.208 ± 0.0028 | l |
| Extreme gradient boosting | 0.288 ± 0.05 | 0.206 ± 0.0072 | l |
| Cubist | 0.384 ± 0.034 | 0.191 ± 0.0053 | i |
| Prospect-Pro | 0.453 ± 0.005 | 0.18 ± 8e-04 | m |
| Method | R2 | RMSE [%] | CLD |
|---|---|---|---|
| NDVI | -0.026 ± 0.027 | 0.257 ± 0.0034 | a |
| NDRE | -0.003 ± 0.026 | 0.254 ± 0.0033 | bc |
| EVI | -0.082 ± 0.011 | 0.264 ± 0.0013 | d |
| GCI | -0.01 ± 0.026 | 0.255 ± 0.0032 | abc |
| GNDVI | -0.012 ± 0.027 | 0.255 ± 0.0034 | abc |
| MCARI | -0.001 ± 0.019 | 0.254 ± 0.0024 | b |
| RECI | -0.007 ± 0.023 | 0.254 ± 0.0029 | abc |
| TCARI | 0.068 ± 0.006 | 0.245 ± 8e-04 | e |
| WDRVI | -0.021 ± 0.023 | 0.256 ± 0.0029 | ac |
| R434 | 0.198 ± 0.007 | 0.227 ± 9e-04 | f |
| Combined vegetation indices | 0.237 ± 0.011 | 0.221 ± 0.0015 | g |
| Recursive feature selection | 0.142 ± 0.022 | 0.235 ± 0.003 | h |
| Square feature selection | 0.256 ± 0.014 | 0.218 ± 0.0021 | i |
| Lasso | 0.249 ± 0.012 | 0.22 ± 0.0018 | i |
| Ridge | 0.206 ± 0.008 | 0.226 ± 0.0012 | j |
| Elastic-net | 0.25 ± 0.012 | 0.219 ± 0.0017 | i |
| Principal components | 0.236 ± 0.013 | 0.221 ± 0.0019 | g |
| Partial least squares | 0.228 ± 0.013 | 0.223 ± 0.0019 | g |
| Random forest | 0.102 ± 0.032 | 0.24 ± 0.0042 | k |
| Extreme gradient boosting | 0.127 ± 0.018 | 0.237 ± 0.0024 | hl |
| Cubist | 0.175 ± 0.013 | 0.23 ± 0.0018 | m |
| Less | 0.116 ± 0.011 | 0.237 ± 0.0015 | kl |
| Less + interpolation | 0.235 ± 0.009 | 0.22 ± 0.0013 | g |