A quarto book for technical documentations

A demonstration how quarto books can be used for documentation and
collaboration

Damian Oswald

August 26, 2024

Abstract

This document presents a comprehensive demonstration of the versatile capabilities of Quarto
books through a series of practical examples. By leveraging Quarto’s robust markdown support,

we illustrate how to seamlessly integrate emojis, construct informative tables, and create complex
diagrams using Mermaid syntax.

Table of contents

1 Introduction

1.1 What is this wiki for?
1.2 What can [do in a Quarto Wiki?
1.3 Examples of Usage
2 Some demonstration of quarto books
2.1 First, a little markdown guideo
211 Lists . . o o o
2.1.2 Headers e
2.1.3 Linksand Images
214 Quotesand Code L
2.1.5 Emojis.
2.2 Tables
2.3 Mermaid diagramso Lo
24 Codefiles e

3 A last page

Chapter 1

Introduction

Welcome to my very first Quarto wiki!

1.1 What is this wiki for?

This wiki has been created exclusively for the purpose of thoroughly testing and exploring the
various functionalities and features that Quarto’s wiki platform offers.

1.2

What can I do in a Quarto Wiki?

A Quarto Wiki is a powerful tool that you can use to enhance your project’s documentation and
collaboration. Here are some of the key features and actions you can perform in a Quarto Wiki:

1.

Create and Organize Pages: You can create multiple pages to document different as-
pects of your project, such as installation guides, API documentation, tutorials, and FAQs.
Arrange pages in a hierarchical structure with nested pages, or use a table of contents to
provide easy navigation.

Write and Format Content: Quarto Wikis support Markdown, allowing you to format
text with headers, lists, links, images, code blocks, and more. For more advanced formatting,
you can also use HTML.

Collaborate with Others: Multiple collaborators can edit wiki pages to contribute to the
documentation. Track changes made to the wiki pages, view revision history, and revert to
previous versions if necessary.

Embed Media and Code: Embed images and videos to enhance the documentation visu-
ally. Include code snippets with syntax highlighting for various programming languages.

Link to Other Resources: Internal Links: Link to other pages within the wiki for better
navigation. External Links: Link to external resources such as websites, other repositories,
or documentation.

Search and Navigation: Use the search functionality to find specific content within the
wiki quickly. Customize the sidebar and footer to provide links to important pages and

resources.

Access Control: Public and Private Wikis: Depending on the repository settings, the
wiki can be public for anyone to view or private, accessible only to repository collaborators.
Permissions: Control who can edit the wiki pages by managing repository permissions.

Git Integration: Clone and Push: Clone the wiki repository to your local machine, make
changes locally, and push updates back to GitHub. This allows for more advanced editing
using local tools and version control.

Project Management: Documentation for Projects: Use the wiki to document the
project’s development process, including roadmaps, milestones, and task lists.

1.3 Examples of Usage

Project Documentation: Comprehensive guides and references for using and contributing
to the project.

API Documentation: Detailed information on API endpoints, parameters, and examples.
Tutorials and How-Tos: Step-by-step instructions for common tasks and workflows.
Developer Guides: Documentation for developers to understand the codebase and con-
tribute effectively.

User Manuals: Instructions for end-users on how to install, configure, and use the software.

By leveraging these features, a GitHub Wiki can significantly enhance the quality and accessibility
of your project’s documentation, making it easier for contributors and users to understand and
engage with your project.

Chapter 2

Some demonstration of quarto books

2.1 First, a little markdown guide

Hello and welcome! Markdown is a lightweight markup language with plain-text formatting syntax.
It can be converted into HTML and other formats. Here’s a quick demonstration of common

markdown features.

You can make text bold by wrapping it with two asterisks or underscores. Italics are just as easy!
Wrap text with one asterisk or underscore: [talic Text.

2.1.1 Lists
Creating lists is straightforward. There are unordered lists...

e Unordered list item 1
e Unordered list item 2
— Subitem 2.1
— Subitem 2.2

..and then there are ordered lists:

1. A first item
2. A second item
3. And a last item

2.1.2 Headers
Headers from H1 to H6 are essential for structure. They're made with #:

H1 Header
H2 Header
H3 Header

2.1.3 Links and Images

Adding a link is as simple as wrapping text in brackets followed by the URL in parentheses. To
add an image, it’s very similar but starts with an exclamation:

Figure 2.1: This is an image of some agricultural activity in coorporate design.

2.1.4 Quotes and Code
Quotes are also a default part of the markdown syntax.
This is a blockquote. Use it to highlight important sections.

And so is code. For inline code, use single backticks: Inline code here For longer code, use
triple backticks:

def hello world():
print ("Hello, world!")

2.1.5 Emojis

To insert emojis, simply type :heart:. Use whatever name the emoji has and it will be rendered
correspondingly Here, I want to write something else. So that I am !

2.2 Tables

Here’s an example of a markdown table using pipe syntax, representing a list of programming
languages and their respective release years:

Table 2.1: We can add a table caption. And a reference.

Programming Language Release Year Creator

Python 1991 Guido van Rossum
JavaScript 1995 Brendan Eich

Java 1995 James Gosling

CH++ 1985 Bjarne Stroustrup
Ruby 1995 Yukihiro Matsumoto
Swift 2014 Apple Inc.

Go 2009 Robert Griesemer et al

https://www.openai.com

Feel free to use or modify Table 2.1 as needed!

2.3 Mermaid diagrams

This diagram visualizes the fundamental structure of the product catalog without the junction
tables, i.e. containing many-to-many relationships.

CUSTOMER
string id
string name
string email

string phone

[

places
ORDER PRODUCT
string id string | id
string date string | name
string status string | description
contains includes
% LINE-ITEM %/
string id
int quantity

decimal | price

Figure 2.2: Example of a simple entity relationship diagram using Mermaid JS.

Here’s a simple example of a sequence diagram using Mermaid JS. This diagram will illustrate a
sequence of interactions between two actors, System A and System B, with a message exchange:

In this sequence diagram: - SystemA and SystemB are the participants (systems) involved in the
sequence of interactions. - SystemA ->> SystemB: Message denotes a message sent from SystemA
to SystemB. - SystemB -->> SystemA: Response denotes a response message sent from SystemB
back to SystemA.

This example shows a simple sequence where SystemA sends two messages (Message 1and Message
2) to SystemB, and SystemB responds with Response 1 and Response 2 respectively.

SystemA SystemB

Message 1
>
Response 1
<
Message 2
>
Response 2
4
SystemA SystemB

Figure 2.3: Example of a simple sequence diagram using Mermaid JS.

2.4 Code files

Below is a simple demo Python code that demonstrates a basic program to calculate the factorial
of a number using both iterative and recursive methods:

Here’s an explanation for the code above.

» Iterative Method (factorial_iterative):

— Initializes result to 1.
— Loops from 1 to n, multiplying result by the loop counter i in each iteration.

— Returns the final result.
« Recursive Method (factorial_recursive):
— If nis 0, returns 1 (base case).
— Otherwise, returns n multiplied by the factorial of n-1.

e Main Program:
— Defines a variable number to hold the value for which the factorial is to be calculated.

— Calls the iterative and recursive factorial functions and prints the results.

You can run this code in any Python environment to see the output for the factorial of 5 using
both methods.

Listing 2.1 factorial.py

def factorial iterative(n):
"""Calculate factorial of a number iteratively."""
result =1
for i in range(l, n + 1):
result *= i
return result

def factorial recursive(n):
"""Calculate factorial of a number recursively."""
if n ==
return 1
else:
return n * factorial recursive(n - 1)

Input: Number for which factorial is to be calculated
number = 5

Calculate factorial using iterative method
iterative result = factorial iterative(number)
print (f"Factorial of {number} (iterative): {iterative_resultl}")

Calculate factorial using recursive method
recursive_result = factorial recursive(number)
print (f"Factorial of {number} (recursive): {recursive_resultl}")

Chapter 3

A last page

Aaand that’s it. This is the last page of this wiki.

	Introduction
	What is this wiki for?
	What can I do in a Quarto Wiki?
	Examples of Usage

	Some demonstration of quarto books
	First, a little markdown guide
	Lists
	Headers
	Links and Images
	Quotes and Code
	Emojis

	Tables
	Mermaid diagrams
	Code files

	A last page

