Master thesis presentation
April 11, 2024
Almonds are a profitable but also intensive crop, where the recommended nitrogen application ranges between 130 and 285 kg N ha-1 a-1 (Brown et al. 2020).
Nitrogen leaching negatively impacts ecological systems and can affect the water supply quality (Yang et al. 2008).
Remote sensing of crop nitrogen for an adequate fertilization is one of the core promises of precision agriculture (Walter et al. 2017).
\[ f: \boldsymbol \rho \in \mathbb R^{d} \longrightarrow \text{N}_{\%} \in \mathbb R \tag{1}\]
I was trying out different modelling approaches to predict foliar nitrogen concentration from spectral data.
For this presentation, the focus will heavily lie on radiative transfer models.
Figure 1: Westwind almond orchard in Woodland, CA (left). Explanation of hyperspectral images (right).
Figure 2: Segmentation process to extract the mean spectral reflectance from the hyperspectral images.
Leaf-level and canopy-level data was used for this thesis, both referring to the same target trees.
Level | Observations | Bands | Range | Sensor |
---|---|---|---|---|
Leaf | 124 | 1024 | 338 - 2512 nm | HR-1024i |
Canopy | 107 | 151 | 385 - 900 nm | Pika L |
Abbreviation | Parameter | Unit | |
---|---|---|---|
\(\mathbf c\) |
CHL CAR ANT BROWN EWT PROT CBC |
Chlorophyll content Carotenoid content Anthocyanin content Tannin content Equivalent water thickness Protein content Carbon-based constituent content |
\(\mu \text{g cm}^{-2}\) \(\mu \text{g cm}^{-2}\) \(\mu \text{g cm}^{-2}\) \(-\) \(\text{g cm}^{-2}\) \(\text{g cm}^{-2}\) \(\text{g cm}^{-2}\) |
\(N\) | N |
Leaf mesophyll structure parameter | |
\(\alpha\) | alpha |
Solid angle for incident light at surface of leaf | \(^{\circ}\) |
We start out with equations describing s- and p-polarized transmission and reflection by Fresnel (1821), where \(n\) is the refractive index. \[ \scriptstyle t_s(\theta, n) = \frac{4\sqrt{1-\sin^2 \theta} \sqrt{n^2-\sin^2 \theta}}{\left(\sqrt{1-\sin^2 \theta} + \sqrt{n^2-\sin^2 \theta}\right)^2} \qquad t_p(\theta, n) = \frac{4n^2\sqrt{1-\sin^2 \theta} \sqrt{n^2-\sin^2 \theta}}{\left(n^2\sqrt{1-\sin^2 \theta} + \sqrt{n^2-\sin^2 \theta}\right)^2} \tag{3}\] We are interested in the transmissivity for diffuse light coming from all angles \(\theta\) between \(0\) and \(\frac{\pi}{2}\). \[ \scriptstyle \overline{T} = \frac{\int_0^{2\pi} d\varphi \int_0^{\alpha} t(\theta,n) \cos \theta \sin\theta d \theta}{\int_0^{2\pi} d\varphi \int_0^{\alpha} \cos \theta \sin\theta d \theta} \tag{4}\] The Fresnel equations were integrated by Allen (1973) for a general case of the maximum incidence angle \(\alpha\), both for s-polarized transmissivity:
\[ \scriptstyle \begin{aligned} T_s(\alpha, n) = \frac{1}{96}\frac{(n^2-1)^4}{\left[\sqrt{\left(\sin^2 \alpha -\frac{1}{2} (n^2 + 1)\right)^2 -\frac{1}{4} (n^2 - 1)^2} - \sin^2 \alpha +\frac{1}{2} (n^2 + 1)\right]^3} - \\\ \frac{1}{4}\frac{n^4 - 2n^2 +1}{\sqrt{\left(\sin^2 \alpha -\frac{1}{2} (n^2 + 1)\right)^2 -\frac{1}{4} (n^2 - 1)^2} - \sin^2 \alpha + \frac{1}{2} (n^2 + 1)} - \\\ \frac{1}{2} \left( \sqrt{\left(\sin^2 \alpha -\frac{1}{2} (n^2 + 1)\right)^2 -\frac{1}{4} (n^2 - 1)^2} - \sin^2 \alpha + \frac{1}{2} (n^2 + 1) \right) + \\\ \frac{1}{12} \frac{(n^2 - 1)^4}{(n + 1)^6} + \frac{1}{2} \frac{(n^2-1)^2}{(n+1)^2} + \frac{1}{4} (n^2+2n+1) \end{aligned} \tag{5}\]
As well as for p-polarized transmissivity:
\[ \scriptstyle \begin{aligned} T_p(\alpha, n) = \frac{-2 n^2}{(n^2 + 1)^2} \left[ \sqrt{\left(\sin^2 \alpha - \frac{1}{2} (n^2 + 1)\right)^2 - \frac{1}{4} (n^2 - 1)^2} - \sin^2 \alpha + \frac{1}{2} (n^2 + 1) - \frac{1}{2} (n + 1)^2 \right] - \\\ \frac{2 n^2 (n^2 + 1)}{(n^2-1)^2} \cdot \ln \left[ \sqrt{\left(\sin^2 \alpha - \frac{1}{2} (n^2 + 1)\right)^2 - \frac{1}{4} (n^2 - 1)^2} - \frac{\sin^2 \alpha - \frac{1}{2}(n^2 + 1)}{(n+1)^2} \right] + \\\ \frac{1}{2} n^2 \left\{ \left[ \sqrt{\left(\sin^2 \alpha - \frac{1}{2} (n^2 + 1)\right)^2 - \frac{1}{4} (n^2 - 1)^2} - \sin^2\alpha - \frac{1}{2} (n^2 + 1)\right]^{-1} - \frac{2}{(n + 1)^2} \right\} + \\ \frac{16n^4 (n^4 + 1)}{(n^2+1)^3(n^2-1)^2} \cdot \ln \left[\frac{ 2 (n^2 + 1) \left(\sqrt{\left(\sin^2 \alpha - \frac{1}{2} (n^2 + 1)\right)^2} - \sin^2 \alpha + \frac{1}{2} (n^2 + 1)\right) - (n^2 - 1)^2}{(n^2 + 1)(n + 1)^2 - (n^2-1)^2} \right] + \\\ \frac{16 n^6}{(n^2 + 1)^3} \left[ {2 (n^2 + 1) \left(\sqrt{\left(\sin^2 \alpha - \frac{1}{2} (n^2 + 1)\right)^2} - \sin^2 \alpha + \frac{1}{2} (n^2 + 1)\right) - (n^2 - 1)^2} \right]^{-1} - \\\ \frac{16n^6}{(n^2 + 1)^3\left( (n^2 + 1) (n + 1)^2 - (n^2 - 1)^2 \right)} \end{aligned} \tag{6}\]
Combine the two above to get the average transmissivity \(\overline{T}\) as a function of \(\alpha\) and \(n\).
\[ \scriptstyle \overline{T}(\alpha, n) = \frac{T_s(\alpha, n) + T_p(\alpha, n)}{2 \cdot \sin^2 \alpha} \tag{7}\]
The overall absorption coefficients \(k\) of a wavelength \(\lambda\) can be calculated as a weighted sum of specific absorption coefficients \(s\), where the weights are the content of the plant pigments. These specific absorption coefficients were empirically estimated by Féret et al. (2021).
\[ \scriptstyle k_\lambda = \frac{1}{N} \sum_i c_i s_{i,\lambda} \tag{8}\]
Given this coefficient vector, we can calculate the transmission for isotropic light \(\varphi\) for every wavelength \(\lambda\) with \(k = k_\lambda\) using the upper incomplete gamma function according to the Beer-Lambert law (Lambert 1760; Beer 1852).
\[ \scriptstyle \varphi = (1 - k) \cdot e^{-k} + k^2 \cdot \Gamma(k) = (1 - k) \cdot e^{-k} + k^2 \cdot \int_k^\infty \frac{e^{-t}}{t} dt \tag{9}\]
Given all of the equations above, Jacquemoud (1992) wrote the first implementation of the Prospect model. \[ \scriptstyle \begin{aligned} A = \frac{ \varphi \: \overline T(90, n)} { n^2\left[1 - \varphi^2 \: \left(1 - n^{-2} \: \overline T(90, n) \right)^2\right] } \qquad B = \overline T(90, n) \: A \\[15pt] C = 1 - \overline T(90, n) + \varphi \: B \: \left(1 - \frac{\overline T(90, n)}{n^2}\right) \\[15pt] D = \sqrt{(1 + C + B) \: (1 + C - B) \: (1 - C + B) \: (1 - C - B)} \qquad E = \frac{1 + C^2 - B^2 + D}{2\,C} \\[15pt] F = \frac{1 - C^2 + B^2 + D}{2\,B} \qquad G = F^{N-1} \qquad H = \frac{E \, (G^2 - 1)}{E^2 \, G^2 - 1} \end{aligned} \tag{10}\] Everything can be put together to get the spectral reflectance \(\rho\) and transmittance \(\tau\) of a leaf. \[ \scriptstyle \rho = 1 - \overline T(\alpha, n) \left[ 1 + \varphi \, A \left(1 - \frac{\overline T(90, n)}{n^2} \right) + \frac{A \, H \, B}{1 - H \, C} \right] \tag{11}\] \[ \scriptstyle \tau = \frac{\overline T(\alpha, n) \, A \, G \, (E^2 - 1)}{(E^2 \, G^2 - 1) \, (1 - H \, C)} \tag{12}\]
Figure 3: The preliminarily used three-dimensional model of an almond tree (A) and how it is arranged to represent a tree in the orchard (B).
Figure 4: An RGB representation of the hyperspectral data which was observed (C) compared to the one that was simulated (D).
Figure 5: Results based on a 50 times repeated 20-fold cross validation.
Figure 6: Results based on a 50 times repeated 20-fold cross validation.
Figure 7: Results based on a 50 times repeated 20-fold cross validation.
Remote sensing of foliar nitrogen in Californian almonds